Differential gene expression occurs in the process of development, maintenance, injury, and death of unicellular as well as complex organisms. Differentially expressed genes are usually identified by comparing steady-state mRNA concentrations. Electronic subtraction (ES), subtractive hybridization (SH), and differential display (DD) are methods commonly used for this purpose. A rigorous examination has been lacking and therefore quantitative aspects of these methods remain speculative. We compare these methods by identifying a total of 58 unique differentially expressed mRNAs within the same experimental system (HeLa cells treated with interferon-gamma). ES yields digital, reusable data that quantitated steady-state mRNA concentrations but only identified abundant mRNAs (seven were identified), which represent a small fraction of the total number of differentially expressed mRNAs. SH and DD identified abundant and rare mRNAs (33 and 23 unique mRNAs respectively) with redundancy. The redundancy is mRNA abundance-dependent for SH and primer-dependent for DD. We conclude that DD is the method of choice because it identifies mRNAs independent of prevalence, uses small amounts of RNA, identifies increases and decreases of mRNA steady-state levels simultaneously, and has rapid output.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nbt1296-1685DOI Listing

Publication Analysis

Top Keywords

differentially expressed
16
expressed mrnas
12
steady-state mrna
8
mrna concentrations
8
identified abundant
8
mrnas identified
8
mrnas
7
cloning differentially
4
expressed
4
mrnas differential
4

Similar Publications

Exploring markers in nursing care of prostate cancer.

Medicine (Baltimore)

January 2025

Urology and Metabolic Rehabilitation Center, Beijing Rehabilitation Hospital, Capital Medical University, Xixia Zhuang, Badachu, Shijingshan District, Beijing, China.

Prostate cancer is epithelial malignant prostate hyperplasia caused by a tumor. We found prostate cancer GSE141551 and GSE200879 profiles from gene expression omnibus database, followed by differentially expressed genes (DEGs) analysis, weighted gene co-expression network analysis, protein-protein interaction analysis, gene function enrichment analysis, and comparative toxicology database analysis. Finally, the gene expression heat map was drawn, and miRNA information regulating core DEGs was retrieved.

View Article and Find Full Text PDF

The roles of STAT1, CASP8, and MYD88 in the care of ischemic stroke.

Medicine (Baltimore)

January 2025

Nerve Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Xixia Zhuang, Badachu, Shijingshan District, Beijing, China.

Ischemic stroke is caused by blockage of blood vessels in brain, affecting normal function. The roles of Signal Transformer and Activator of Transcription 1 (STAT1), CASP8, and MYD88 in ischemic stroke and its care are unclear. The ischemic stroke datasets GSE16561 and GSE180470 were found from the Gene Expression Omnibus database.

View Article and Find Full Text PDF

T-helper 17 (Th17) cells significantly influence the onset and advancement of malignancies. This study endeavor focused on delineating molecular classifications and developing a prognostic signature grounded in Th17 cell differentiation-related genes (TCDRGs) using machine learning algorithms in head and neck squamous cell carcinoma (HNSCC). A consensus clustering approach was applied to The Cancer Genome Atlas-HNSCC cohort based on TCDRGs, followed by an examination of differential gene expression using the limma package.

View Article and Find Full Text PDF

Background: The morbidity and mortality of sepsis remain high, and so far specific diagnostic and therapeutic means are lacking.

Objective: To screen novel biomarkers for sepsis.

Methods: Raw sepsis data were downloaded from the Chinese National Genebank (CNGBdb) and screened for differentially expressed RNAs.

View Article and Find Full Text PDF

Trichoderma spp. are among the most studied biocontrol agents. While extensive work has been done to understand Trichoderma antagonistic mechanisms, additional research is needed to fully understand how Trichoderma spp.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!