The NAD(+)-dependent isocitrate dehydrogenase of Saccharomyces cerevisiae is an octamer composed of four Idh1p subunits and four Idh2p subunits. Isocitrate dehydrogenase functions in the tricarboxylic acid cycle and has also been reported to bind to the 5' nontranslated region of mitochondrially encoded mRNAs. Mutants defective in either or both of these subunits are unable to grow on the nonfermentable carbon source, acetate, but will utilize glycerol or ethanol. Mutant strains lacking Idh2p maintain normal if not elevated levels of mitochondrial Idh1p. In addition to the mature unassembled Idh1p subunit, a complex of bands in the 85- to 170-kDa range (Idh1p-Cpx) is observed using NAD-IDH antiserum. Both Idh1p and Idh1p-Cpx are insoluble within the mitochondrion and are associated with the mitochondrial inner membrane. A histidine-tagged form of Idh1p was expressed in yeast strains. Chemical amounts of the Idh1p-Cpx could be purified from strains lacking Idh2p but not from strains containing normal levels of Idh2p. The data indicate that Idh1p-Cpx is an aggregated and cross-linked form of Idh1p that may be oxidized within the mitochondrion as a consequence of its aborted assembly.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1006/abbi.1998.0677 | DOI Listing |
J Hematol Oncol
January 2025
Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA.
Background: Olutasidenib is a potent, selective, oral, small molecule inhibitor of mutant IDH1 (mIDH1) which induced durable remissions in high-risk, relapsed/refractory (R/R) mIDH1 AML patients in a phase 1/2 trial. We present a pooled analysis from multiple cohorts of the phase 1/2 trial of patients with R/R AML who received combination olutasidenib and azacitidine therapy.
Methods: Adult patients with mIDH1 AML received 150 mg olutasidenib twice daily plus standard-of-care azacitidine (OLU + AZA) and were evaluated for response and safety.
The role of glioma-associated myeloid cells in tumor growth and immune evasion remains poorly understood. We performed single-cell RNA sequencing of immune and tumor cells from 33 gliomas, identifying two distinct myeloid-derived suppressor cell (MDSC) populations in isocitrate dehydrogenase-wild-type (IDT-WT) glioblastoma: an early progenitor MDSC (E-MDSC) population with up-regulation of metabolic and hypoxia pathways and a monocytic MDSC (M-MDSC) population. Spatial transcriptomics demonstrated that E-MDSCs geographically colocalize with metabolic stem-like tumor cells in the pseudopalisading region.
View Article and Find Full Text PDFTransl Cancer Res
December 2024
Department of Radiation Oncology, The Second Hospital of Lanzhou University, Lanzhou, China.
Background: Within the realm of primary brain tumors, specifically glioblastoma (GBM), presents a notable obstacle due to their unfavorable prognosis and differing median survival rates contingent upon tumor grade and subtype. Despite a plethora of research connecting cardiotrophin-1 (CTF1) modifications to a range of illnesses, its correlation with glioma remains uncertain. This study investigated the clinical value of CTF1 in glioma and its potential as a biomarker of the disease.
View Article and Find Full Text PDFHeliyon
January 2025
Children's Brain Tumour Research Centre, School of Medicine, Biodiscovery Institute, University of Nottingham, UK.
Isocitrate dehydrogenase wild-type glioblastoma (GBM) is characterised by a heterogeneous genetic landscape resulting from dynamic competition between tumour subclones to survive selective pressures. Improvements in metabolite identification and metabolome coverage have led to increased interest in clinically relevant applications of metabolomics. Here, we use liquid chromatography-mass spectrometry and gene expression microarray to profile integrated intratumour metabolic heterogeneity, as a direct functional readout of adaptive responses of subclones to the tumour microenvironment.
View Article and Find Full Text PDFActa Neuropathol Commun
January 2025
Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA.
Glioblastoma is the deadliest primary brain tumor, largely due to inevitable recurrence of the disease after treatment. While most recurrences are local, patients rarely present with a new discontiguous focus of glioblastoma. Little is currently known about the genetic profile of discontiguous recurrences.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!