A series of N-(1-benzylpiperidin-4-yl)phenylacetamide derivatives was synthesized and evaluated for affinity at sigma1 and sigma2 receptors. Most of these compounds showed a high affinity for sigma1 receptors and a low to moderate affinity for sigma2 receptors. The unsubstituted compound N-(1-benzylpiperidin-4-yl)phenylacetamide, 1, displayed a high affinity and selectivity for sigma1 receptors (Ki values of 3.90 nM for sigma1 receptors and 240 nM for sigma2 receptors). The influence of substitutions on the phenylacetamide aromatic ring on binding at both the sigma1 and sigma2 receptor has been examined through Hansch-type quantitative structure-activity relationship (QSAR) studies. In general, all 3-substituted compounds, except for the OH group, had a higher affinity for both sigma1 and sigma2 receptors when compared with the corresponding 2- and 4-substituted analogues. The selectivity for sigma1 receptors displayed a trend of 3 > 2 approximately 4 for Cl, Br, F, NO2, and OMe substituted analogues. Halogen substitution on the aromatic ring generally increased the affinity for sigma2 receptors while maintaining a similar affinity for sigma1 receptors. Substitution with electron-donating groups, such as OH, OMe, or NH2, resulted in weak or negligible affinity for sigma2 receptors and a moderate affinity for sigma1 receptors. The 2-fluoro-substituted analogue, 11, exhibited the highest selectivity for sigma1 receptors among all compounds tested, with a Ki value of 3.56 nM for sigma1 receptors and 667 nM for sigma2 receptors. Compounds 1, 5, 9, 11, and 20 had no affinity for dopamine D2 (IC50 > 10 000 nM) and D3 (IC50 > 10 000 nM) receptors. The nanomolar binding affinity and high selectivity for sigma1 receptors suggest that these compounds may be developed as potential radiotracers for positron emission tomography or single photon emission computerized tomography imaging studies.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jm980032lDOI Listing

Publication Analysis

Top Keywords

sigma1 receptors
36
sigma2 receptors
28
affinity sigma1
20
receptors
17
receptors compounds
16
selectivity sigma1
16
sigma1
13
sigma1 sigma2
12
affinity sigma2
12
affinity
11

Similar Publications

Enhancement of neurogenesis and antidepressant-like efficacy through combined activation of Sigma-1 and 5-HT1A receptors: focus on Sigma-1-5-HT1A heteroreceptor complex.

Neurochem Int

January 2025

Beijing Institute of Basic Medical Sciences, 100850, Beijing, People's Republic of China; Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, 100850, Beijing, People's Republic of China. Electronic address:

The sigma-1 receptor (S1R) attracts significant interests as a potential target for rapid-onset antidepressant-like effects, particularly due to its capacity to swiftly stimulate serotonergic neurons in the dorsal raphe nucleus (DRN). However, the precise regulatory mechanism involved remains unclear. Therefore, this study aims to examine the interaction between the selective S1R agonist, SA-4503 and 8-OH-DPAT, a serotonin1A (5-HT1A) receptor agonist, in mice with depressive-like behavior induced by chronic restraint stress (CRS).

View Article and Find Full Text PDF

Pharmacological modulation of Sigma-1 receptor ameliorates pathological neuroinflammation in rats with diabetic neuropathic pain via the AKT/GSK-3β/NF-κB pathway.

Brain Res Bull

January 2025

Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang, 712046, PR China; Key Laboratory of Pharmacodynamic Mechanism and Material Basis of Traditional Chinese Medicine, Shaanxi Administration of Traditional Chinese Medicine, Xianyang 712046, PR China. Electronic address:

Diabetic neuropathic pain (DNP) is a common complication of diabetes mellitus (DM) and is characterized by spontaneous pain and neuroinflammation. The Sigma-1 receptor (Sig-1R) has been proposed as a target for analgesic development. It is an important receptor with anti-inflammatory properties and has been found to regulate DNP.

View Article and Find Full Text PDF

Adaptive immune resistance in cancer describes the various mechanisms by which tumors adapt to evade anti-tumor immune responses. IFN-γ induction of programmed death-ligand 1 (PD-L1) was the first defined and validated adaptive immune resistance mechanism. The endoplasmic reticulum (ER) is central to adaptive immune resistance as immune modulatory secreted and integral membrane proteins are dependent on ER.

View Article and Find Full Text PDF

Sigma-1 Receptor Modulates CFA-Induced Inflammatory Pain via Sodium Channels in Small DRG Neurons.

Biomolecules

January 2025

Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd., Wuhan 430030, China.

The sigma-1 receptor (Sig-1R) has emerged as a significant target in the realm of pain management and has been the subject of extensive research. Nonetheless, its specific function in inflammatory pain within dorsal root ganglion (DRG) neurons remains inadequately elucidated. This study utilized whole-cell patch clamp techniques, single-cell real-time PCR, and immunohistochemistry to examine the influence of Sig-1R on inflammatory pain induced by complete Freund's adjuvant (CFA) in a rat model.

View Article and Find Full Text PDF

Aims: Sigma-1 receptor (S1R) activation was recently identified as a promising target for preventing diabetic nephropathy (DN) by mitigating hypoxia, oxidative stress, and inflammation. This study aimed to investigate the potential reno-protective effect of the S1R agonist afobazole against streptozotocin (STZ)-induced DN in rats compared to metformin.

Materials And Methods: Rats were split into six groups: the normal control group; the diabetic control group received STZ (55 mg/kg i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!