All enzymes are able to use alternative substrates. When these are naturally occurring metabolites, an 'underground reaction' takes place. Examples are presented in which underground metabolism of this sort produces an observable phenotype. Although biological processes can be remarkably accurate, evolution has selected error rates far from perfect. It is suggested here that a certain level of metabolic inaccuracy, in addition to saving energy, may also confer an evolutionary advantage, for example by providing metabolic plasticity. Since underground reactions are unpredictable from DNA sequence data, caution is in order when interpreting correlations between genetic disorders and pathological syndromes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/(SICI)1521-1878(199802)20:2<181::AID-BIES10>3.0.CO;2-0 | DOI Listing |
BMC Plant Biol
January 2025
State Key Laboratory of Tree Genetics and Breeding, Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, 650233, PR China.
The slope aspect is an important environmental factor, which can indirectly change the acceptable solar radiation of forests. However, the mechanism of how this aspect changes the underground ecosystem and thus affects the growth of aboveground trees is not clear. In this study, Pinus yunnanensis plantation was taken as the research object, and the effects of soil and microbial characteristics on tree growth under different slope aspects and soil depths were systematically analyzed.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan 250100, China.
Peanut ( L.) is one of the most important crops for oil and protein production. The unique characteristic of peanut is geocarpy, which means that it blooms aerially and the peanut gynophores (pegs) penetrate into the soil, driving the fruit underground.
View Article and Find Full Text PDFMicroorganisms
December 2024
Key Laboratory of National Forestry and Grassland Administration on Management of Western Forest Bio-Disaster, Northwest Agriculture and Forestry University, Yangling 712100, China.
Zokor is a group of subterranean rodents that are adapted to underground life and feed on plant roots. Here, we investigated the intestinal microbes of five zokor species (, , , , and ) using 16S amplicon technology combined with bioinformatics. Microbial composition analysis showed similar intestinal microbes but different proportions among five zokor species, and their dominant bacteria corresponded to those of herbivores.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Biology, University of Oxford, Oxford OX1 3SZ, United Kingdom.
Experiments have shown that when one plant is attacked by a pathogen or herbivore, this can lead to other plants connected to the same mycorrhizal network up-regulating their defense mechanisms. It has been hypothesized that this represents signaling, with attacked plants producing a signal to warn other plants of impending harm. We examined the evolutionary plausibility of this and other hypotheses theoretically.
View Article and Find Full Text PDFEcol Appl
January 2025
Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.
Intercorrelated aboveground traits associated with costs and plant growth have been widely used to predict vegetation in response to environmental changes. However, whether underground traits exhibit consistent responses remains unclear, particularly in N-rich subtropical forests. Responses of foliar and root morphological and physiological traits of tree and herb species after 8-year N, P, and combined N and P treatments (50 kg N, P, N and P ha year) were examined in leguminous Acacia auriculiformis (AA) and nonleguminous Eucalyptus urophylla (EU) forests in southern China.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!