High-level secretion of a wheat lipid transfer protein in Pichia pastoris.

Protein Expr Purif

Unité de Biochimie et Biologie Moléculaire des Céréales, INRA, Montpellier, France.

Published: June 1998

Plant nonspecific lipid transfer proteins are small basic proteins with eight cysteine residues, all engaged in disulfide bonds. The sequence encoding the wheat 9-kDa LTP was cloned into the secretion vector pYAM7SP8 giving rise to pYTdltp4.90. Production in shake-flasks and a fermentor led to the synthesis of two major species of LTP: a larger than expected species of 14 kDa and a species of 10 kDa, close to the expected size of wheat LTP. When production was carried out in a fermentor with regulation of pH, oxygen level, and feed rate of carbon source, the 10-kDa species was the main protein at the end-point of culture. The recombinant wheat LTP (rLTP), secreted at a level of 720 mg/liter into the culture medium, is soluble. The rLTP was purified to homogeneity by ammonium sulfate precipitation, gel filtration, and anion-exchange chromatography, with a recovery yield of 36%. However, the molecular mass of rLTP, determined by mass spectrometry, is 9996 Da, while its naturally occurring counterpart has a molecular mass of 9607 Da. This discrepancy in size corresponds to a protein carrying three extra amino acids (DKR) at its N-terminal end, and this was confirmed by sequencing. In vitro lipid transfer activity showed that rLTP behaves in a similar way to the naturally occurring protein. These data indicate that Pichia pastoris is an efficient system for production of large quantities of soluble and biologically active rLTP for structure/function analysis.

Download full-text PDF

Source
http://dx.doi.org/10.1006/prep.1998.0888DOI Listing

Publication Analysis

Top Keywords

lipid transfer
12
pichia pastoris
8
species kda
8
wheat ltp
8
molecular mass
8
naturally occurring
8
rltp
5
high-level secretion
4
wheat
4
secretion wheat
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!