Influence of lipid profile and fatty acid composition on the oxidation behavior of rat and guinea pig low density lipoprotein.

Comp Biochem Physiol B Biochem Mol Biol

Dept. Farmacología y Química Terapeutica, Facultad de Farmacia, Núcleo Universitario de Pedralbes, Barcelona, Spain.

Published: February 1998

Low density lipoprotein (LDL) oxidation is one of the first steps proposed for the development of atherosclerosis. Since lipid profile and fatty acid composition may affect this process, we studied the influence of these factors on the oxidation behavior of rat and guinea pig LDL. Marked compositional differences were observed. Thus, the main lipid carried by rat LDL was triglyceride (TG) (35.8 +/- 5.8%, w/w) whereas total cholesterol (TC) represented 23.8 +/- 3.0%. In contrast, guinea pig LDL contained 13.2 +/- 2% of TG and 44.8 +/- 4.5% of TC. Rat LDL contained higher 20:4(n-6) molar percentages than guinea pig LDL. Thiobarbituric acid reactive substances (TBARS) production (255 +/- 26 and 137 +/- 13 nmol malondialdehyde/mg prot. for rat and guinea pig LDL, respectively) and the maximum rate of conjugated dienes (CD) formation (485 +/- 93 and 77 +/- 11 nmol CD/min/mg protein for rat and guinea pig LDL, respectively) showed that rat LDL are less resistant to oxidation in vitro than guinea pig LDL. The higher oxidation rate of rat LDL seems to be related to its lipid profile, mainly to the high proportion of TG, and to the high content of 20:4(n-6), which is one of the fatty acids most prone to oxidation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0305-0491(97)00331-3DOI Listing

Publication Analysis

Top Keywords

guinea pig
28
pig ldl
24
rat guinea
16
rat ldl
16
lipid profile
12
ldl
11
profile fatty
8
fatty acid
8
acid composition
8
oxidation behavior
8

Similar Publications

Background: Adjusting thickening agent proportions in nanoemulsion gel (NG) balances its transdermal and topical delivery properties, making it more effective for dermatophytosis treatment.

Methods: Carbomer 940 and α-pinene were used as model thickening agent and antifungal, respectively. A series of α-pinene NGs (αNG1, αNG2, αNG3) containing 0.

View Article and Find Full Text PDF

5-Hydroxyindoleacetic acid (5-HIAA), a vital metabolite of serotonin (5-HT), is crucial for understanding metabolic pathways and is implicated in various mental disorders. In situ monitoring of 5-HIAA is challenging due to the lack of affinity ligands and issues with electrochemical fouling. We present an advanced sensing approach that integrates customizable molecular imprinting polymer (MIP) with self-driven galvanic redox potentiometry (GRP) for precise, real-time in vivo monitoring of 5-HIAA.

View Article and Find Full Text PDF

Background: There is limited research on how rodent owners use and perceive veterinary services and what the demand for pet insurance for these species is.

Methods: An online survey of owners of pet rodents (guinea pigs, hamsters, rats, gerbils and mice) measured owner confidence in recognising signs of illness, their opinions on and use of veterinary services and their willingness to purchase pet insurance.

Results: A total of 1700 respondents completed the survey.

View Article and Find Full Text PDF

Novel Hsp90α inhibitor inhibits HSV-1 infection by suppressing the Akt/β-catenin pathway.

Int J Antimicrob Agents

January 2025

School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China. Electronic address:

The prevalence of herpes simplex virus type 1 (HSV-1) infection and the emergence of drug-resistant HSV-1 strains posts a significant global health challenge, necessitating the urgent development of effective anti-HSV-1 drugs. As one of the most prevalent molecular chaperones, heat shock protein 90 α (Hsp90α) has been extensively demonstrated to regulate a range of viral infections, thus representing a promising antiviral target. In this study, we identified JD-13 as a novel Hsp90α inhibitor and explored its capability in inhibiting HSV-1 infection.

View Article and Find Full Text PDF

An understanding of intracellular mechanisms by which fentanyl and other synthetic opioids exert adverse effects on breathing is needed. Using freely moving adult male guinea pigs, we administered the nitric oxide synthase (NOS) inhibitor, L-NAME (N-nitro-L-arginine methyl ester), to determine whether nitrosyl factors, such as nitric oxide and S-nitrosothiols, play a role in fentanyl-induced respiratory depression. Ventilatory parameters were recorded by whole body plethysmography to determine the effects of fentanyl (75 μg/kg, IV) in guinea pigs that had received a prior injection of vehicle (saline), L-NAME or the inactive D-isomer, D-NAME (both at 50 μmol/kg, IV), 15 min beforehand.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!