A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

New substituted 9-alkylpurines as adenosine receptor ligands. | LitMetric

In the present study an investigation of the structure-activity relationships in 9-ethylpurine derivatives, aimed at preparing A1, A2A, A2B, and A3 selective adenosine receptor antagonists, was undertaken. Our synthetic approach was to introduce various substituents (amino, alkoxy and alkynyl groups) into the 2-, 6-, or 8-positions of the purine ring. The starting compounds for each series of derivatives were respectively: 2-iodo-9-ethyladenine (9), obtained from 2-amino-6-chloropurine (5); 9-ethyl-6-iodo-9H-purine (11), 8-bromo-9-ethyl-adenine (3) and 8-bromo-9-ethyl-6-iodo-9H-purine (13), obtained from 9-ethyl-adenine (2). The synthesized compounds were tested in in vitro radioligand binding assays at A1, A2A, and A3 human adenosine receptor subtypes. Due to the lack of a suitable radioligand the affinity of the 9-ethyladenine derivatives at A2B adenosine receptors was determined in adenylyl cyclase experiments. In general, the series of 9-ethylpurine derivatives exhibited a similar pharmacological profile at A1 and A2A receptors whereas some differences were found for the A3 and the A2B subtypes. 8-Bromo-9-ethyladenine (3) showed higher affinity for all receptors in comparison to the parent compound 2, and the highest affinity in the series for the A2A and A2B subtypes (Ki = 0.052 and 0.84 microM, respectively). Analyzing the different substituents, a phenethoxy group in 2-position (10a) gave the highest A2A versus A2B selectivity (near 400-fold), whereas a phenethylamino group in 2- and 6-position (10b and 12b, respectively) improved the affinity at A2B receptors, compared to the parent compound 2. The presence of a hexynyl substituent in 8-position led to a compound with good affinity at the A3 receptor (4d, Ki = 0.62 microM), whereas (ar)alkynyl groups are detrimental for the potency at the A2B subtype. These differences give raise to the hope that further modifications will result in the development of currently unavailable leads with good affinity and selectivity for A2B adenosine receptors.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0968-0896(98)00007-8DOI Listing

Publication Analysis

Top Keywords

adenosine receptor
12
9-ethylpurine derivatives
8
a2b
8
a2a a2b
8
a2b adenosine
8
adenosine receptors
8
a2b subtypes
8
parent compound
8
good affinity
8
affinity
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!