Prothymosin alpha modulates the interaction of histone H1 with chromatin.

Nucleic Acids Res

Laboratory of Biological Chemistry, University of Ioannina, Medical School, 451 10 Ioannina, Greece.

Published: July 1998

Prothymosin alpha (ProTalpha) is an abundant acidic nuclear protein that may be involved in cell proliferation. In our search for its cellular partners, we have recently found that ProTalpha binds to linker histone H1. We now provide further evidence for the physiological relevance of this interaction by immunoisolation of a histone H1-ProTalpha complex from NIH 3T3 cell extracts. A detailed analysis of the interaction between the two proteins suggests contacts between the acidic region of ProTalpha and histone H1. In the context of a physiological chromatin reconstitution reaction, the presence of ProTalpha does not affect incorporation of an amount of histone H1 sufficient to increase the nucleosome repeat length by 20 bp, but prevents association of all further H1. Consistent with this finding, a fraction of histone H1 is released when H1-containing chromatin is challenged with ProTalpha. These results imply at least two different interaction modes of H1 with chromatin, which can be distinguished by their sensitivity to ProTalpha. The properties of ProTalpha suggest a role in fine tuning the stoichiometry and/or mode of interaction of H1 with chromatin.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC147683PMC
http://dx.doi.org/10.1093/nar/26.13.3111DOI Listing

Publication Analysis

Top Keywords

prothymosin alpha
8
protalpha
7
histone
6
interaction
5
chromatin
5
alpha modulates
4
modulates interaction
4
interaction histone
4
histone chromatin
4
chromatin prothymosin
4

Similar Publications

The effects of guanidinium hydrochloride (GdmCl) on two intrinsically disordered proteins (IDPs) are investigated using simulations of the self-organized polymer-IDP (SOP-IDP) model. The impact of GdmCl is taken into account using the molecular transfer model (MTM). We show that due to the dramatic reduction in the stiffness of the highly charged Prothymosin-α (ProTα) with increasing concentration of GdmCl ([GdmCl]), the radius of gyration () decreases sharply until about 1.

View Article and Find Full Text PDF

Driving Forces in the Formation of Biocondensates of Highly Charged Proteins: A Thermodynamic Analysis of the Binary Complex Formation.

Biomolecules

November 2024

Institut für Chemie und Biochemie, Freie Universität Berlin, Forschungsbau SupraFab, Altensteinstrasse 23a, 14195 Berlin, Germany.

Article Synopsis
  • The study focuses on the interaction between the positively charged linker histone H1 and the negatively charged chaperone prothymosin α (ProTα), highlighting their strong binding in physiological conditions.
  • The analysis employs a thermodynamic model that considers the influence of counterion release and hydration on the complex formation.
  • The findings reveal that the binding energy is primarily driven by the release of counterions from ProTα, while changes in water interactions and conformational constraints contribute to a significant negative change in free energy.
View Article and Find Full Text PDF

Conformations and dynamics of an intrinsically disordered protein (IDP) depend on its composition of charged and uncharged amino acids, and their specific placement in the protein sequence. In general, the charge (positive or negative) on an amino acid residue in the protein is not a fixed quantity. Each of the ionizable groups can exist in an equilibrated distribution of fully ionized state (monopole) and an ion-pair (dipole) state formed between the ionizing group and its counterion from the background electrolyte solution.

View Article and Find Full Text PDF

Circular RNA COL1A1 promotes Warburg effect and tumor growth in nasopharyngeal carcinoma.

Discov Oncol

April 2024

Department of Otolaryngology, The First Affiliated Hospital of Jinan University, No. 613 West Huangpu Avenue, Tianhe District, Guangzhou, 510630, Guangdong, China.

Objective: Circular RNAs (circRNAs), pivotal in the pathogenesis and progression of nasopharyngeal carcinoma (NPC), remain a significant point of investigation for potential therapeutic interventions. Our research was driven by the objective to decipher the roles and underlying mechanisms of hsa_circ_0044569 (circCOL1A1) in governing the malignant phenotypes and the Warburg effect in NPC.

Methods: We systematically collected samples from NPC tissues and normal nasopharyngeal epithelial counterparts.

View Article and Find Full Text PDF

Effect of prothymosin α on neuroplasticity following cerebral ischemia‑reperfusion injury.

Mol Med Rep

April 2024

Neurophysiology Laboratory, Neurosurgical Service, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan, R.O.C.

Prothymosin α (ProT), a highly acidic nuclear protein with multiple cellular functions, has shown potential neuroprotective properties attributed to its anti‑necrotic and anti‑apoptotic activities. The present study aimed to investigate the beneficial effect of ProT on neuroplasticity after ischemia‑reperfusion injury and elucidate its underlying mechanism of action. Primary cortical neurons were either treated with ProT or overexpressing ProT by gene transfection and exposed to oxygen‑glucose deprivation for 2 h .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!