Ligandin and aminoazo-dye-binding protein A both bind bilirubin at a single site. Quantitative studies of the interactions using difference spectrophotometry show that at pH 7.0, protein A binds the tetrapyrrole with an association constant (K) greater than or equal to 2 X 10(7) litre/mol, whereas binding by ligandin is slightly weaker (K = 7 X 10(6) litre/mol) at this pH. The protein-bilirubin complexes give rise to absorption and fluorescence spectra quite different from those of unbound bilirubin and also to large Cotton effects. It appears that on binding to both proteins, the ligand is forced into a rigid twisted configuration in a hydrophobic environment. Ligandin and protein A resemble serum albumin in their interactions with bilirubin.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1163833 | PMC |
http://dx.doi.org/10.1042/bj1570211 | DOI Listing |
1. To assess the possible involvement of ligandin and aminoazo-dye-binding protein A in intracellular transport it is necessary to know how their ligands, most of which are molecules with hydrophobic moieties, interact with cellular membranes. To obtain such information we have examined the interactions of 2-acetylaminofluorene, 4-dimethylaminoazobenzene, oestrone and testosterone with aqueous dispersions of egg phosphatidylcholine and egg phosphatidylcholine/cholesterol (1:1, molar ratio) by equilibrium dialysis and spectrophotometry.
View Article and Find Full Text PDF1. To assess the possible involvement of ligandin and aminoazo-dye-binding protein A in intracellular transport it is necessary to know how their ligands, most of which are molecules with hydrophobic moieties, interact with cellular membranes. To obtain such information we examined the interactions of bromosulphophthalein, oestrone sulphate, haem and bilirubin with aqueous dispersions of egg phosphatidylcholine and egg phosphatidylchone/cholesterol (1:1, molar ratio) by equilibrium dialysis and spectrophotometry.
View Article and Find Full Text PDF1. The interactions of ferriprotoporphyrin IX with ligandin and aminoazo-dye-binding protein A result in absorption spectra in the Soret region characteristic of the ligand in its monomeric state. 2.
View Article and Find Full Text PDFLigandin and aminoazo-dye-binding protein A both bind bilirubin at a single site. Quantitative studies of the interactions using difference spectrophotometry show that at pH 7.0, protein A binds the tetrapyrrole with an association constant (K) greater than or equal to 2 X 10(7) litre/mol, whereas binding by ligandin is slightly weaker (K = 7 X 10(6) litre/mol) at this pH.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!