Calreticulin is the major high capacity, low affinity Ca2+ binding protein localized within the endoplasmic reticulum. It functions as a reservoir for triggered release of Ca2+ by the endoplasmic reticulum and is thus integral to eukaryotic signal transduction pathways involving Ca2+ as a second messenger. The early branching photosynthetic protist Euglena gracilis is shown to possess calreticulin as its major high capacity Ca2+ binding protein. The protein was purified, microsequenced and cloned. Like its homologues from higher eukaryotes, calreticulin from Euglena possesses a short signal peptide for endoplasmic reticulum import and the C-terminal retention signal KDEL, indicating that these components of the eukaryotic protein routing apparatus were functional in their present form prior to divergence of the euglenozoan lineage. A gene phylogeny for calreticulin and calnexin sequences in the context of eukaryotic homologues indicates i) that these Ca2+ binding endoplasmic reticulum proteins descend from a gene duplication that occurred in the earliest stages of eukaryotic evolution and furthermore ii) that Euglenozoa express the calreticulin protein of the kinetoplastid (trypanosomes and their relatives) lineage, rather than that of the eukaryotic chlorophyte which gave rise to Euglena's plastids. Evidence for conservation of endoplasmic reticulum routing and Ca2+ binding function of calreticulin from Euglena traces the functional history of Ca2+ second messenger signal transduction pathways deep into eukaryotic evolution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1550-7408.1998.tb04541.x | DOI Listing |
Antioxid Redox Signal
January 2025
Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.
Thyroid hormones (TH) are major regulators of cell differentiation, growth, and metabolic rate. TH synthesis in the thyroid gland requires high amounts of HO to oxidize iodide for the iodination of thyroglobulin (TG). Retinol Saturase (RetSat) is an oxidoreductase implicated in dihydroretinol formation and cellular sensitivity toward peroxides and ferroptosis.
View Article and Find Full Text PDFFront Cell Infect Microbiol
December 2024
Phage Research Center of Liaocheng University, Liaocheng, China.
is a significant pathogen affecting shrimp and crab farming, particularly strains carrying genes associated with acute hepatopancreatic necrosis syndrome. However, the immune response of to infection remains unclear. To address this knowledge gap, an experiment was conducted to establish a infection model.
View Article and Find Full Text PDFHeliyon
December 2024
Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China.
Knee Osteoarthritis (KOA) is characterized by phenotypic alterations, apoptosis, and the breakdown of the extracellular matrix (ECM) in the superficial articular cartilage cells. The inflammatory response activates the Endoplasmic Reticulum Stress (ERS) signaling pathway, which plays a critical role in the pathophysiology and progression of KOA. Chondrocytes stimulated by thapsigargin(TG)exhibit heightened ERS and significantly increase the expression of ERS-associated proteins.
View Article and Find Full Text PDFGenes Dis
March 2025
Pediatric Orthopaedic Hospital, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710032, China.
Although the pathogenesis and mechanism of congenital skeletal dysplasia are better understood, progress in drug development and intervention research remains limited. Here we report that melatonin treatment elicits a mitigating effect on skeletal abnormalities caused by deficiency. In addition to our previous finding of endoplasmic reticulum stress upon deficiency, we found calcium (Ca) overload jointly contributed to -associated chondrodysplasias.
View Article and Find Full Text PDFACS Omega
December 2024
Faculty of Science, Department of Biology, Gazi University, Ankara 06500, Türkiye.
Nickel oxide nanoparticles are engineered particles that are now widely used in medicine, agriculture, and industry applications. This study aimed to investigate subchronic testicular toxicity induced by nickel oxide (NiO) and nickel oxide nanoparticles (NiONPs) in rats by comparing oral, intraperitoneal (IP), and intravenous (IV) routes of administration. Forty-two male Wistar rats were used for the study, and seven groups were formed: control group, NiO oral (150 mg/kg), NiO IP (20 mg/kg), NiO IV (1 mg/kg), NiONP oral (150 mg/kg), NiONP IP (20 mg/kg), and NiONP IV (1 mg/kg).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!