Optic atrophy induced by an intraorbital wooden foreign body: the role of CT and MRI.

J Pediatr Ophthalmol Strabismus

Department of Strabismus and Neuroophthalmology, Kantonsspital St. Gallen, Switzerland.

Published: August 1998

Download full-text PDF

Source
http://dx.doi.org/10.3928/0191-3913-19980501-15DOI Listing

Publication Analysis

Top Keywords

optic atrophy
4
atrophy induced
4
induced intraorbital
4
intraorbital wooden
4
wooden foreign
4
foreign body
4
body role
4
role mri
4
optic
1
induced
1

Similar Publications

 In this research, the authors provide a retrospective cohort study of 82 patients with suprasellar meningiomas to identify predictors of the visual outcome following surgery. We also conducted a matched retrospective case-control analysis.  This retrospective cohort study included all patients who underwent craniotomy for surgical excision of suprasellar meningiomas at our institution between January 2016 and March 2022.

View Article and Find Full Text PDF

Prevalence and Clinical Associations of Peripapillary Hyperreflective Ovoid Mass-like Structures in Craniosynostosis.

J Neuroophthalmol

January 2025

Department of Ophthalmology (JGJ-C, TE, Y-HC, LRD, RAG), Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts; Frank H. Netter Medical School (JGJ-C), North Haven, Connecticut; and Department of Anesthesiology (DZ), Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts.

Background: Patients with craniosynostosis are at high risk of developing elevated intracranial pressure (ICP) causing papilledema and secondary optic atrophy. Diagnosing and monitoring optic neuropathy is challenging because of multiple causes of vision loss including exposure keratopathy, amblyopia, and cognitive delays that limit examination. Peripapillary hyperreflective ovoid mass-like structures (PHOMS) are an optical coherence tomography (OCT) finding reported in association with papilledema and optic neuropathy.

View Article and Find Full Text PDF

Glaucoma Detection and Feature Identification via GPT-4V Fundus Image Analysis.

Ophthalmol Sci

November 2024

Division of Ophthalmology Informatics and Data Science, Viterbi Family Department of Ophthalmology, Shiley Eye Institute, University of California, San Diego, La Jolla, California.

Purpose: The aim is to assess GPT-4V's (OpenAI) diagnostic accuracy and its capability to identify glaucoma-related features compared to expert evaluations.

Design: Evaluation of multimodal large language models for reviewing fundus images in glaucoma.

Subjects: A total of 300 fundus images from 3 public datasets (ACRIMA, ORIGA, and RIM-One v3) that included 139 glaucomatous and 161 nonglaucomatous cases were analyzed.

View Article and Find Full Text PDF

TBC1D20 coordinates vesicle transport and actin remodeling to regulate ciliogenesis.

J Cell Biol

April 2025

Department of Genetics and Cell Biology, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.

TBC1D20 deficiency causes Warburg Micro Syndrome in humans, characterized by multiple eye abnormalities, severe intellectual disability, and abnormal sexual development, but the molecular mechanisms remain unknown. Here, we identify TBC1D20 as a novel Rab11 GTPase-activating protein that coordinates vesicle transport and actin remodeling to regulate ciliogenesis. Depletion of TBC1D20 promotes Rab11 vesicle accumulation and actin deconstruction around the centrosome, facilitating the initiation of ciliogenesis even in cycling cells.

View Article and Find Full Text PDF

. Leber hereditary optic neuropathy (LHON) is a condition characterized by bilateral acute or subacute vision loss in seemingly healthy individuals. Depending on the disease stage and initial presentation, it is often diagnosed as optic neuritis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!