We found previously that 8-hydroxyguanine (oh8Gua) endonuclease in E. coli is induced in response to oxidative stress in a fashion similar to the oxidative response of the Mn-superoxide dismutase (MnSOD). In this study, attempts were made to identify the genes involved in the co-regulation of E. coli endonuclease and MnSOD (sodA). oh8Gua nuclease is induced by molecular oxygen and a superoxide radical generator (paraquat) but not by H2O2, suggesting that the regulation of this endonuclease is dependent on SoxRS but independent of OxyR. This enzyme was induced by paraquat in all of the soxRS mutant strains used (soxR-, soxS- and soxRc), whereas glucose-6-phosphate dehydrogenase (a member of the soxRS regulon) showed the expected responses; therefore, this possibility was excluded. The presence of metal chelators in the growth medium caused the induction of this enzyme, and this induction was suppressed by the addition of Fe++. Consistent with this finding, this enzyme was expressed under anaerobiosis in all of the mutant strains of fnr in particular, as well as fur, arcA, and combinations thereof. These findings suggest that the oxidative regulation of oh8Gua endonuclease is under control of fnr, fur, and arcA, where fnr plays a predominant role. The multiple involvement of regulatory genes as well as co-regulation with antioxidant enzyme will enhance the efficiency of cellular growth and survival in the aerobic environment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0891-5849(97)00427-9DOI Listing

Publication Analysis

Top Keywords

oxidative stress
8
oh8gua endonuclease
8
mutant strains
8
fur arca
8
endonuclease
5
mechanism regulation
4
regulation 8-hydroxyguanine
4
8-hydroxyguanine endonuclease
4
oxidative
4
endonuclease oxidative
4

Similar Publications

This prospective observational study aimed to compare abdominal hysterectomy (AH), vaginal hysterectomy (VH), and total laparoscopic hysterectomy (TLH) in terms of oxidative stress (OS) by measuring serum levels of total antioxidant status (TAS), total oxidant status (TOS), and oxidative stress index (OSI). Of the 3 groups, namely, AH, VH, and TLH, 22 patients were enrolled in each to investigate the aim of the study mentioned above. Patient demographics, clinical and surgical characteristics, and preoperative and postoperative (0th and 24th hours) serum TAS, TOS, and OSI levels were investigated.

View Article and Find Full Text PDF

Objective: The pathophysiology of delayed cerebral ischemia (DCI) is not fully elucidated. The lack of accurate diagnostic tools increases the probability of delayed diagnosis and timely treatment. The authors assessed the relationship of 8-iso-prostaglandin F2α (F2-IsoP) and oxidative stress biomarkers, nitric oxide synthase 3 (NOS3) and nicotinamide adenine dinucleotide phosphate (NADPH), with DCI after aneurysmal subarachnoid hemorrhage (aSAH).

View Article and Find Full Text PDF

20% acute pancreatitis (AP) develops into severe AP (SAP), a global health crisis, with an increased mortality rate to 30%-50%. Mitochondrial damage and immune disorders are direct factors, which exacerbate the occurrence and progression of AP. So far, mitochondrial and immunity injury in SAP remains largely elusive, with no established treatment options available.

View Article and Find Full Text PDF

Cryo-EM structure and regulation of human NAD kinase.

Sci Adv

January 2025

Atelier de Biologie Chimie Informatique Structurale, Centre de Biologie Structurale, Univ Montpellier, CNRS, INSERM, 29 rue de Navacelles, 34090 Montpellier, France.

Reduced nicotinamide adenine dinucleotide phosphate (NADPH) is a crucial reducing cofactor for reductive biosynthesis and protection from oxidative stress. To fulfill their heightened anabolic and reductive power demands, cancer cells must boost their NADPH production. Progrowth and mitogenic protein kinases promote the activity of cytosolic NAD kinase (NADK), which produces NADP, a limiting NADPH precursor.

View Article and Find Full Text PDF

Circadian rhythm disruption, commonly caused by factors such as jet lag and shift work, is increasingly recognized as a critical factor impairing wound healing. Although melatonin is known to regulate circadian rhythms and has potential in wound repair, its clinical application is limited by low bioavailability. To address these challenges, we developed an alginate-based dual-network hydrogel as a delivery system for melatonin, ensuring its stable and sustained release at the wound site.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!