Loss of a vimentin network due to gene disruption created viable mice that did not differ overtly from wild-type littermates. Here, primary fibroblasts derived from vimentin-deficient (-/-) and wild-type (+/+) mouse embryos were cultured, and biological functions were studied in in vitro systems resembling stress situations. Stiffness of -/- fibroblasts was reduced by 40% in comparison to wild-type cells. Vimentin-deficient cells also displayed reduced mechanical stability, motility and directional migration towards different chemo-attractive stimuli. Reorganization of collagen fibrils and contraction of collagen lattices were severely impaired. The spatial organization of focal contact proteins, as well as actin microfilament organization was disturbed. Thus, absence of a vimentin filament network does not impair basic cellular functions needed for growth in culture, but cells are mechanically less stable, and we propose that therefore they are impaired in all functions depending upon mechanical stability.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jcs.111.13.1897DOI Listing

Publication Analysis

Top Keywords

mechanical stability
12
impaired mechanical
4
stability migration
4
migration contractile
4
contractile capacity
4
capacity vimentin-deficient
4
vimentin-deficient fibroblasts
4
fibroblasts loss
4
loss vimentin
4
vimentin network
4

Similar Publications

In oil-rich regions, the increasing risk of oil spills on soil is largely attributed to intensified extraction and transportation activities. This situation necessitates a focus on the short-term and long-term strength of contaminated soils. While existing literature primarily evaluates the oil-contaminated soils over short-term periods, typically up to 28 days, it is essential to investigate their long-term performance, extending the evaluation period to 365 days.

View Article and Find Full Text PDF

Objective: This study aimed to evaluate the efficacy and safety of bisphenol A-glycidyl methacrylate (bis-GMA) without UV light polymerization for the repair of refractory iatrogenic cerebrospinal fluid (CSF) leaks with large skull base defects.

Background: CSF leakage remains a common complication after neurosurgical interventions with a substantial resultant impact on morbidity and increased healthcare costs. The management of refractory CSF leaks with large skull base defects remains challenging.

View Article and Find Full Text PDF

Achieving the smallest crystallite/particle size of zinc oxide nanoparticles (ZnO NPs) reported to date, measuring 5.2/12.41 nm with () leaf extract, this study introduces a facile green synthesis.

View Article and Find Full Text PDF

Powder-based fire extinguishing agents have become a kind of promising substitutes for halon extinguishing agents in civil aircrafts. However, their storage lifespan, significantly influenced by the thermal aging, emerges as a crucial yet overlooked aspect for aviation use. This study investigates the effects of thermal aging cycles on various parameters of ordinary dry powder extinguishing agent (ODPEA) and novel superhydrophobic and oleophobic ultra-fine dry powder extinguishing agent (SHOU DPEA), including surface microscopic morphology, D90 (the diameter at which 90% of the cumulative volume of particles are equal to or smaller than this value), chemical structure, hydrophobic and oleophobic angles, flowability, extinguishing time and effectiveness.

View Article and Find Full Text PDF

Analysis of scoliosis rod deformation after cutting with a surgical rod cutter.

Spine Deform

January 2025

Department of Orthopedic Surgery, Children's Mercy Kansas City, Kansas City, Missouri, USA.

Purpose: Scoliosis is a complex multi-dimensional deformity of the spine that is common in children and adults. Of the various treatments for scoliosis, one is posterior spinal fusion with instrumentation. The rods typically used are composed of titanium or cobalt-chrome.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!