The herbicide paraquat (1,1'-dimethyl-4,4'-bipyridylium dichloride; PQ), is a poison known to cause delayed mortality due to lung and kidney injuries. High-resolution proton nuclear magnetic resonance (1H NMR) spectroscopy has been extensively applied in evaluating nephrotoxicity by the characteristic perturbations in the excretion pattern of low molecular weight endogenous metabolites. The application of the method allows the rapid localization of the renal injury noninvasively. In this study, we report 1H NMR and conventional clinical chemistry urinalysis in two patients suffering from paraquat intoxication after overdose with suicidal intent. The alterations in the urine NMR spectrum suggest necrosis of the pars recta of the proximal renal tubules. The molecule of paraquat is also clearly detected in the same spectrum. In conclusion, the rapid screening of urine by NMR spectroscopy provides information about both the identity of the poison and the abnormal pattern of endogenous metabolites that characterize the location of the injury in renal tubules and reveals alterations in unusual metabolites that are not commonly measured.

Download full-text PDF

Source

Publication Analysis

Top Keywords

renal injury
8
nuclear magnetic
8
magnetic resonance
8
nmr spectroscopy
8
endogenous metabolites
8
urine nmr
8
renal tubules
8
paraquat-induced renal
4
injury studied
4
studied nuclear
4

Similar Publications

Anuric Acute Kidney Injury in Chronic Myeloid Leukemia: A Rare Complication Case.

Acta Med Indones

October 2024

Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia.

This report describes a rare case of anuric acute kidney injury related to suspected urate nephropathy in a 23-year-old male with chronic phase of Chronic Myeloid Leukemia (CML). The patient presented with anuria and limb edema, with a history of imatinib-treated CML. Investigations revealed probable urate crystals causing bilateral hydronephrosis and hydroureters.

View Article and Find Full Text PDF

Hirsutine Mitigates Ferroptosis in Podocytes of Diabetic Kidney Disease by Downregulating the p53/GPX4 Signaling Pathway.

Eur J Pharmacol

January 2025

Department of Endocrinology, Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China. Electronic address:

Diabetic kidney disease (DKD) is a leading cause of chronic kidney disease worldwide, and podocyte ferroptosis plays a crucial role in its pathogenesis. Hirsutine (HS) reduces blood glucose levels and improve insulin resistance in diabetic mice, suggesting its potential use in diabetes treatment. Here, we established a db/db mouse model of DKD and administered HS for 8 weeks.

View Article and Find Full Text PDF

Background And Objective: The aim of this retrospective observational case-control study was to examine the significance of different renal Doppler marker variations within the initial 24-hour period as potential predictors of Acute Kidney Injury (AKI) in patients with sepsis.

Methods: A total of 198 sepsis patients were enrolled and categorized into two groups: the AKI group (n = 136) and the non-AKI group (n = 62). Three renal Doppler indices, Renal Resistive Index (RRI), Power Doppler Ultrasound (PDU) score and Renal Venous Stasis Index (RVSI), were measured within 6h (T0) and at 24h (T1) after ICU admission.

View Article and Find Full Text PDF

A-D-A type fluorescent probe with dual quaternary-ammonium-salt anchors for turn on detection of HSA in wide emission gamut.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122 China. Electronic address:

Human serum albumin (HSA) is a key protein implicates in various physiological and pathological conditions such as renal injury, diabetes mellitus. Herein, we report an AIE-active fluorescent probe (DNI-4) for detection of HSA with a "turn on" response covering visible and near-infrared region (500 - 800 nm). Combining with a triphenylamine and two 1,8-naphthalimide moieties, the chromophore segment of DNI-4 forms a "A-D-A" type molecular architecture with the twisted intramolecular charge transfer property.

View Article and Find Full Text PDF

Introduction: Acute kidney injury involves inflammation and intrinsic renal damage, and is a common complication of severe coronavirus disease 2019 (COVID-19). Baseline chronic kidney disease (CKD) confers an increased mortality risk. We determined the renal long-term outcomes of COVID-19 in patients with baseline CKD, and the risk factors prompting renal replacement therapy (RRT) initiation and mortality.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!