Polyamines are required for entry and progression of the cell cycle. As such, augmentation of polyamine levels is essential for cellular transformation. Polyamines are autoregulated through induction of antizyme, which represses both the rate-limiting polyamine biosynthetic enzyme ornithine decarboxylase and cellular polyamine transport. In the present study we demonstrate that agmatine, a metabolite of arginine via arginine decarboxylase (an arginine pathway distinct from that of the classical polyamines), also serves the dual regulatory functions of suppressing polyamine biosynthesis and cellular polyamine uptake through induction of antizyme. The capacity of agmatine to induce antizyme is demonstrated by: (a) an agmatine-dependent translational frameshift of antizyme mRNA to produce a full-length protein and (b) suppression of agmatine-dependent inhibitory activity by either anti-antizyme IgG or antizyme inhibitor. Furthermore, agmatine administration depletes intracellular polyamine levels to suppress cellular proliferation in a transformed cell line. This suppression is reversible with polyamine supplementation. We propose a novel regulatory pathway in which agmatine acts as an antiproliferative molecule and potential tumor suppressor by restricting the cellular polyamine supply required to support growth.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.273.25.15313DOI Listing

Publication Analysis

Top Keywords

cellular polyamine
16
induction antizyme
12
polyamine levels
12
polyamine
9
antizyme
6
cellular
6
agmatine
5
agmatine suppresses
4
suppresses proliferation
4
proliferation frameshift
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!