The role of glycosylation in autoimmune disease.

Autoimmunity

Department of Immunology, The Windeyer Institute of Medical Sciences, University College London Medical School, UK.

Published: July 1998

Oligosaccharide structures play a key role in the antigenicity of a number of clinically important antigens such as blood group determinants. Interest in glycobiology has increased dramatically amongst immunologists during the last few years due to the fact that oligosaccharides also play a central role in adhesion and homing events during inflammatory processes (1), comprise powerful xenotransplantation antigens (2), and may provide targets for tumor immunotherapy (3). Additionally, alterations in glycosylation are now known to occur in a number of autoimmune diseases. This review will first discuss some general aspects of protein glycosylation and then explore some of the autoimmune diseases in which the role of glycosylation has been examined.

Download full-text PDF

Source
http://dx.doi.org/10.3109/08916939808993836DOI Listing

Publication Analysis

Top Keywords

role glycosylation
8
autoimmune diseases
8
role
4
glycosylation autoimmune
4
autoimmune disease
4
disease oligosaccharide
4
oligosaccharide structures
4
structures play
4
play key
4
key role
4

Similar Publications

Lysyl oxidase (LOX), a copper-containing secretory oxidase, plays a key role in the regulation of extracellular stiffness through cross-linking with collagen and elastin. Among the LOX family of enzymes, LOX-like 4 (LOXL4) exhibits pro-tumor and anti-tumor properties; therefore, the functional role of LOXL4 in tumor progression is still under investigation. Here, we first determined that transforming growth factor-β1 (TGF-β1) significantly decreased LOXL4 expression in human breast cancer MDA-MB-231 cells, which suggested that decreased LOXL4 may participate in tumor progression.

View Article and Find Full Text PDF

Molecular mechanism of protein-lipid interactions in steamed egg gelation and deterioration: A quantitative proteomic study.

Int J Biol Macromol

January 2025

Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu 610106, China. Electronic address:

Steamed egg (SE), a traditional egg dish, exhibits steaming time-dependent textural properties. This study investigated the molecular mechanisms underlying SE gel formation and deterioration through quantitative proteomics combined with physicochemical characterization. Results showed optimal gel formation at 11 min steaming, while prolonged steaming (23 min) led to gel cracking and sensory deterioration.

View Article and Find Full Text PDF

Two pathogen-inducible UDP-glycosyltransferases, UGT73C3 and UGT73C4, catalyze the glycosylation of pinoresinol to promote plant immunity in Arabidopsis.

Plant Commun

January 2025

The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education; Shandong Key Laboratory of Precision Molecular Crop Design and Breeding; School of Life Sciences, Shandong University, Qingdao 266237, China. Electronic address:

UDP-glycosyltransferases (UGTs) constitute the largest glycosyltransferase family in the plant kingdom. They are responsible for transferring sugar moieties onto various small molecules to control many metabolic processes. However, their physiological significance in plants is largely unknown.

View Article and Find Full Text PDF

Microvirin is a lectin molecule known to have monovalent interaction with glycoprotein gp120. A previously reported high-resolution structural analysis defines the mannobiose-binding cavity of Microvirin. Nonetheless, structure does not directly define the energetics of binding contributions of protein contact residues.

View Article and Find Full Text PDF

: Genomic Diversity and Structure.

Pathogens

January 2025

Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain.

is the causative agent of Chagas disease, a neglected tropical disease, and one of the most important parasitic diseases worldwide. The first genome of was sequenced in 2005, and its complexity made assembly and annotation challenging. Nowadays, new sequencing methods have improved some strains' genome sequence and annotation, revealing this parasite's extensive genetic diversity and complexity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!