Gastrin via its G-protein coupled specific receptor induces transcription of c-fos and c-jun genes through a ras-MAPK pathway. Ornithine Decarboxylase (ODC), a growth regulated proto-oncogene, was chosen to investigate gastrin effects on translation initiation of mRNAs exhibiting a 5'UnTranslated Region (5'UTR) responsible for translation repression in quiescent cells. In AR4-2J tumoral cells, we first demonstrated that gastrin increases ODC mRNA translation. Transient transfections with various CAT chimeric constructs suggested a direct involvement of the 5'UTR in this observation. Translation of this group of mRNAs is enhanced by the availability of the cap-binding protein (eIF4E) that is increased after phosphorylation of its specific binding protein eIF4E-BP1. We found that AR4-2J cells over-expressed eIF4E protein which was not modulated by gastrin treatment. Rapamycin which inhibits 4E-BP1 phosphorylation, completely prevents gastrin-mediated increase of ODC translation indicating that 4E-BP1 could be involved in regulating ODC translation. Implication of 4E-BP1 in mediating gastrin effects is corroborated by the capacity of the ligand to affect 4E-BP1 phosphorylation. These results indicate that gastrin enhances ornithine decarboxylase mRNA translation through a rapamycin sensitive pathway and provide the first evidence in the control of 4E-BP1 phosphorylation after occupancy of a G protein-coupled receptor.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/sj.onc.1201748 | DOI Listing |
Arch Biochem Biophys
January 2025
Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico. Electronic address:
Cancer is among the leading causes of death worldwide. The effectiveness of conventional chemotherapy has some drawbacks, therefore, there is an urgency to develop novel strategies to fight this disease. Ornithine decarboxylase (ODC) is the most finely tuned enzyme of the polyamine (PA) biosynthesis pathway as it is regulated at different levels: transcriptional, translational, post-translational, and by feedback inhibition.
View Article and Find Full Text PDFBMC Pregnancy Childbirth
January 2025
Department of Basic Pharmaceutical Sciences, Division of Biochemistry, Recep Tayyip Erdogan University, Rize, Turkey.
Background: Placental syndrome, mainly composed of preeclampsia and fetal growth restriction, has an impact on the health of mother and baby dyads. While impaired placentation is central to their pathophysiology, the underlying molecular mechanisms remain incompletely understood. This study investigates the association between placental syndrome and metabolic alterations in 1-deoxysphingolipids (1-deoxySLs) and polyamines, along with their regulatory enzymes.
View Article and Find Full Text PDFBMC Oral Health
January 2025
Department of Life Sciences, GITAM (Deemed to be University), GITAM School of Science, Visakhapatnam, Andhra Pradesh, 530 045, India.
Background: The oral cavity is a complex environment which harbours the second largest and most diverse microflora after the gastrointestinal tract. The bacteriome in the oral cavity plays a pivotal role in promoting the health and well-being of human beings. Gingivitis, an inflammation of the gingival tissue, arises due to plaque accumulation on the teeth, often leads to periodontitis.
View Article and Find Full Text PDFIn Silico Pharmacol
December 2024
Laboratory of Cell and Molecular Biology, Department of Botany, Centre of Advanced Study, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019 India.
Visceral Leishmaniasis, caused by is the second most deadly parasitic disease, causing over 65,000 deaths annually. Synthetic drugs available in the market, to combat this disease, have numerous side effects. In this backdrop, we aim to find safer antileishmanial alternatives with minimal side effects from mushrooms, which harbour various secondary metabolites with promising efficacy.
View Article and Find Full Text PDFSupraphysiological androgen (SPA) treatment can paradoxically restrict growth of castration-resistant prostate cancer with high androgen receptor (AR) activity, which is the basis for use of Bipolar Androgen Therapy (BAT) for patients with this disease. While androgens are widely appreciated to enhance anabolic metabolism, how SPA-mediated metabolic changes alter prostate cancer progression and therapy response is unknown. Here, we report that SPA markedly increased intracellular and secreted polyamines in prostate cancer models.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!