We recently demonstrated that net fluid uptake occurs in the capillary system of the inner medulla. To define the site of fluid uptake, the concentration of protein was determined in plasma from descending vasa recta at the base and tip of the exposed papilla in Munich-Wister rats. The vasa recta plasma-to-arterial plasma protein concentration ratio (VR/P) was 1.43 +/- 0.09 at the base and 1.66 +/- 0.09 at the tip. These results, which indicate fluid loss from the descending vasa recta, are difficult to explain on the basic of hydraulic and oncotic forces alone. The osmolality of the contents of descending vasa recta increased between base and tip (delta = 72 +/- 30 mosmol/kg H2O). If the increase in osmolality of plasma in descending vasa recta lags behind that of the adjacent medullary interstitium, a transcapillary osmotic driving force exists favoring water loss from descending vessels. It is concluded that fluid uptake by the inner medullary circulation occurs beyond descending vasa recta in interconnecting capillaries or ascending vasa recta. In our view the most likely interpretation of these results is that fluid movement across vasa recta in the inner medulla is influenced by three forces: those owing to transcapillary differences in osmotic, oncotic, and hydraulic pressures.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajplegacy.1976.231.2.313DOI Listing

Publication Analysis

Top Keywords

vasa recta
32
descending vasa
20
inner medulla
12
fluid uptake
12
plasma descending
8
vasa
8
recta
8
+/- 009
8
loss descending
8
descending
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!