Functional porcine islets, free of known pathogens, can serve as a source of insulin producing cells for the treatment of experimentally induced insulin dependent Diabetes Mellitus. Porcine islets can be conformally coated (microencapsulated) with a covalently linked, stable permselective membrane while maintaining islet viability and function. The PEG conformal coating is immunoprotective in a discordant xenograft animal model (porcine islets to rat).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1749-6632.1997.tb52208.x | DOI Listing |
Transpl Int
January 2025
Pôle de Chirurgie Expérimentale et Transplantation, Université Catholique de Louvain, Brussels, Belgium.
Clinical pancreatic islet xenotransplantation will most probably rely on genetically modified pigs as donors. Several lines of transgenic pigs carrying one and more often, multiple modifications already exist. The vast majority of these modifications aim to mitigate the host immune response by suppressing major xeno-antigens, or expressing immunomodulatory molecules that act locally at the graft site.
View Article and Find Full Text PDFTranspl Int
December 2024
Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany.
Xenotransplantation of porcine organs has made remarkable progress towards clinical application. A key factor has been the generation of genetically multi-modified source pigs for xenotransplants, protected against immune rejection and coagulation dysregulation. While efficient gene editing tools and multi-cistronic expression cassettes facilitate sophisticated and complex genetic modifications with multiple gene knockouts and protective transgenes, an increasing number of independently segregating genetic units complicates the breeding of the source pigs.
View Article and Find Full Text PDFSurg Innov
December 2024
LUMC Transplant Center, Leiden University Medical Center, Leiden, The Netherlands.
Background: Intraportal pancreatic islet transplantation is a treatment option for patients with severe beta cell failure and unstable glycemic control. However, this procedure is associated with loss of beta cells after intrahepatic transplantation. Islet delivery devices (IDDs) implanted at extrahepatic sites may support engraftment and improve survival of pancreatic islets.
View Article and Find Full Text PDFAm J Transplant
November 2024
Isla Technologies, Inc, San Carlos, California, USA. Electronic address:
In this study using a discordant, xenogeneic, transplant model we demonstrate the functionality and safety of the first stent-based bioartificial pancreas (BAP) device implanted endovascularly into an artery, harnessing the high oxygen content in blood to support islet viability. The device is a self-expanding nitinol stent that is coated with a bilayer of polytetrafluoroethylene that forms channels to hold islets embedded in a hydrogel. We completed a 1-month study in the nondiabetic swine model (N = 3) to test the safety of the device and to assess islet functionality after device recovery.
View Article and Find Full Text PDFTranspl Int
November 2024
Clinic Unit of Regenerative Medicine and Organ Transplants and Diabetes Research Institute, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!