Functional porcine islets, free of known pathogens, can serve as a source of insulin producing cells for the treatment of experimentally induced insulin dependent Diabetes Mellitus. Porcine islets can be conformally coated (microencapsulated) with a covalently linked, stable permselective membrane while maintaining islet viability and function. The PEG conformal coating is immunoprotective in a discordant xenograft animal model (porcine islets to rat).

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1749-6632.1997.tb52208.xDOI Listing

Publication Analysis

Top Keywords

porcine islets
20
diabetes mellitus
8
conformal coating
8
porcine
5
islets
5
immunoisolation adult
4
adult porcine
4
islets treatment
4
treatment diabetes
4
mellitus photopolymerizable
4

Similar Publications

Enhanced Insulin Production From Porcine Islets: More Insulin, Less Islets.

Transpl Int

January 2025

Pôle de Chirurgie Expérimentale et Transplantation, Université Catholique de Louvain, Brussels, Belgium.

Clinical pancreatic islet xenotransplantation will most probably rely on genetically modified pigs as donors. Several lines of transgenic pigs carrying one and more often, multiple modifications already exist. The vast majority of these modifications aim to mitigate the host immune response by suppressing major xeno-antigens, or expressing immunomodulatory molecules that act locally at the graft site.

View Article and Find Full Text PDF

Xenotransplantation of porcine organs has made remarkable progress towards clinical application. A key factor has been the generation of genetically multi-modified source pigs for xenotransplants, protected against immune rejection and coagulation dysregulation. While efficient gene editing tools and multi-cistronic expression cassettes facilitate sophisticated and complex genetic modifications with multiple gene knockouts and protective transgenes, an increasing number of independently segregating genetic units complicates the breeding of the source pigs.

View Article and Find Full Text PDF

Background: Intraportal pancreatic islet transplantation is a treatment option for patients with severe beta cell failure and unstable glycemic control. However, this procedure is associated with loss of beta cells after intrahepatic transplantation. Islet delivery devices (IDDs) implanted at extrahepatic sites may support engraftment and improve survival of pancreatic islets.

View Article and Find Full Text PDF

In this study using a discordant, xenogeneic, transplant model we demonstrate the functionality and safety of the first stent-based bioartificial pancreas (BAP) device implanted endovascularly into an artery, harnessing the high oxygen content in blood to support islet viability. The device is a self-expanding nitinol stent that is coated with a bilayer of polytetrafluoroethylene that forms channels to hold islets embedded in a hydrogel. We completed a 1-month study in the nondiabetic swine model (N = 3) to test the safety of the device and to assess islet functionality after device recovery.

View Article and Find Full Text PDF
Article Synopsis
  • * It explores the compatibility of porcine islets with human glucose metabolism, their potential as a reliable source of beta cells, and the immunological challenges faced in xenotransplantation.
  • * The discussion includes regulatory and ethical considerations surrounding the use of pig islets, emphasizing the importance of ongoing research and dialogue to address obstacles and promote their integration into T1D therapies.*
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!