Fat balance in obese subjects: role of glycogen stores.

Am J Physiol

Department of Human Biology, Maastricht University, 6200 MD Maastricht, The Netherlands.

Published: June 1998

In a previous study, we showed that lean subjects are capable of rapidly adjusting fat oxidation to fat intake on a high-fat (HF) diet when glycogen stores are lowered by exhaustive exercise. However, it has been proposed that obese subjects have impaired fat oxidation. We therefore studied the effect of low glycogen stores on fat oxidation after a switch from a reduced-fat (RF) diet to an HF diet in obese subjects. Ten healthy, obese male and female subjects (26 +/- 2 yr, body mass index 31.8 +/- 1.4, maximal power output 228 +/- 14 W) consumed an RF diet (30, 55, and 15% of energy from fat, carbohydrate, and protein, respectively) at home for 3 days on four occasions (days 1-3). On two occasions, subjects came to the laboratory on day 3 at 1500 to perform an exhaustive glycogen-lowering exercise test (Ex), after which they went into a respiration chamber for a 36-h stay. On the other two occasions, subjects directly entered the respiration chamber at 1800 for a 36-h stay. In the respiration chamber, they were fed, in energy balance, either an HF diet (60, 25, and 15% of energy from fat, carbohydrate, and protein, respectively) or an RF diet. All diets were consumed as breakfast, lunch, dinner, and two or more snacks per day. Twenty-four-hour respiratory quotient was 0.91 +/- 0.01, 0.89 +/- 0.01, 0.84 +/- 0.01, and 0.81 +/- 0.01 with RF diet, RF + Ex, HF, and HF + Ex treatments, respectively. With the HF treatment, fat oxidation was below fat intake, indicating the slow change of oxidation to intake on an HF diet. After the HF + Ex treatment, however, fat oxidation matched fat intake. In conclusion, obese subjects are capable of rapidly adjusting fat oxidation to fat intake when glycogen stores are lowered by exhaustive exercise.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpendo.1998.274.6.E1027DOI Listing

Publication Analysis

Top Keywords

fat oxidation
24
obese subjects
16
glycogen stores
16
fat intake
16
+/- 001
16
fat
13
oxidation fat
12
respiration chamber
12
subjects
8
subjects capable
8

Similar Publications

Background: Astaxanthin (ASX), a fat-soluble carotenoid mainly sourced from Haematococcus pluvialis, shows promise for clinical applications in chronic inflammatory diseases. This study investigates whether ASX can mitigate atherosclerosis (AS) by modulating macrophage ferroptosis and provides astaxanthin-loaded polylactic acid-glycolic acid nanoparticles (ASX-PLGA NPs) as comparison.

Method: ApoE-/- mice were fed a high-fat diet with ASX or statin intervention.

View Article and Find Full Text PDF

Unlabelled: One of the principles of prevention and non-drug treatment of liver diseases, including hepatitis of various etiologies, is the normalization of the diet, including the use of daily diet foods with physiologically active ingredients, in particular betulin, which helps to reduce metabolic and oxidative processes within liver cells. The aim of the work was to evaluate the in vivo effect of triterpene alcohol betulin Roth isolated from the bark of birch Betula pendula Roth. added to fat-containing products (for example, mayonnaise) on the biochemical parameters of blood and the morphological structure of the liver of rats with initiated acute toxic hepatitis.

View Article and Find Full Text PDF

B-Type Trimeric Procyanidins Attenuate Nonalcoholic Hepatic Steatosis Through AMPK/mTOR Signaling Pathway in Oleic Acid-Induced HepG2 Cells and High-Fat Diet- Fed Zebrafish.

Plant Foods Hum Nutr

January 2025

Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining, 810008, P.R. China.

NAFLD is one of the most common and rapidly increasing liver diseases. Procyanidin C1 and procyanidin C2, B-type trimeric procyanidins, show beneficial effects on regulating lipid metabolism. However, the mechanism underlying these effects remain elusive.

View Article and Find Full Text PDF

A high-fat diet could lead to obesity, increasing colorectal cancer risk due to dyslipidemia and chronic inflammation, while Piper betle (PB) exhibits anti-tumor, anti-inflammation, and anti-oxidant benefits. This study aimed to determine whether PB possesses chemopreventive effects on high-fat diet (HFD)-induced and azoxymethane (AOM)-induced colon cancer. Male Sprague-Dawley rats receiving either a normal diet or HFD were divided into control, PB, AOM, and AOM+PB subgroups which were then sacrificed after 24 weeks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!