The related proteins p300 and CBP (cAMP-response-element-binding protein (CREB)-binding protein)) are transcriptional co-activators that act with other factors to regulate gene expression and play roles in many cell-differentiation and signal transduction pathways. Both proteins have intrinsic histone-acetyltransferase activity and may act directly on chromatin, of which histone is a component, to facilitate transcription. They are also involved in growth control pathways, as shown by their interaction with the tumour suppressor p53 and the viral oncogenes E1A and SV40 T antigen. Here we report functional differences of p300 and CBP in vivo. We examined their roles during retinoic-acid-induced differentiation, cell-cycle exit and programmed cell death (apoptosis) of embryonal carcinoma F9 cells, using hammerhead ribozymes capable of cleaving either p300 or CBP messenger RNAs. F9 cells expressing a p300-specific ribozyme became resistant to retinoic-acid-induced differentiation, whereas cells expressing a CBP-specific ribozyme were unaffected. Similarly, retinoic-acid-induced transcriptional upregulation of the cell-cycle inhibitor p21Cip1 required normal levels of p300, but not CBP, whereas the reverse was true for p27Kip1. In contrast, both ribozymes blocked retinoic-acid-induced apoptosis, indicating that both co-activators are required for this process. Thus, despite their similarities, p300 and CBP have distinct functions during retinoic-acid-induced differentiation of F9 cells.

Download full-text PDF

Source
http://dx.doi.org/10.1038/30538DOI Listing

Publication Analysis

Top Keywords

p300 cbp
24
retinoic-acid-induced differentiation
12
cells expressing
8
differentiation cells
8
p300
6
cbp
6
retinoic-acid-induced
6
distinct roles
4
roles co-activators
4
co-activators p300
4

Similar Publications

Background: Memory is influenced by epigenetic mechanisms that regulate gene expression. Histone acetyltransferases (HATs), and histone deacetylases (HDACs), are two competitive enzymes regulating histone acetylation. Histone acetylation is reduced in Alzheimer's disease (AD) brains, and evidence has shown a synergistic regulation of HDACs and HATs activities.

View Article and Find Full Text PDF
Article Synopsis
  • The switch from oxidative phosphorylation to glycolysis is essential for activating microglia, particularly in the context of Parkinson's disease (PD).
  • Recent research shows that inhibiting glycolysis can reduce inflammation and protect dopaminergic neurons in PD mice by decreasing lactate levels.
  • The study identifies a significant role of histone lactylation, specifically H3K9, in promoting microglial activation, suggesting potential therapeutic avenues for managing neuroinflammation in PD.
View Article and Find Full Text PDF

Differences in protein lactylation between pale, soft and exudative and red, firm and non-exudative pork.

Meat Sci

March 2025

State Key Laboratory of Meat Quality Control and Cultured Meat Development, Ministry of Education China, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.

This study aimed to understand the development of pale, soft, and exudative (PSE) pork from a new perspective by comparing the differences of lactate-induced protein lactylation and its potential regulators including E1A binding protein p300 (p300) and cAMP response element binding protein (CBP) between PSE and red, firm, and non-exudative (RFN) pork at 1 h postmortem. Results demonstrated that PSE pork presented lower glycogen contents and higher lactate levels than RFN pork (P < 0.05).

View Article and Find Full Text PDF

Elevated EBF2 in mouse but not pig drives the progressive brown fat lineage specification via chromatin activation.

J Adv Res

December 2024

College of Animal Science, Shandong Provincial Key Laboratory for Livestock Germplasm Innovation & Utilization, Shandong Agricultural University, Taian, China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China. Electronic address:

Brown adipose tissue (BAT) is responsible for non-shivering thermogenesis, but it is absent in some mammals, including pigs. During development, BAT progenitors are derived from paired box 7 (Pax7)-expressing somitic mesodermal stem cells, which also give rise to skeletal muscle. However, the intrinsic mechanisms underlying the fate decisions between brown fat and muscle progenitors remain elusive.

View Article and Find Full Text PDF

Transcriptomic and Metabolomic Analysis Reveals Multifaceted Impact of Gcn5 Knockdown in Development.

Metabolites

December 2024

The Laboratory of Heart Development Research, College of Life Science, Hunan Normal University, Changsha 410081, China.

General control nonderepressible 5 (Gcn5) is a lysine acetyltransferase (KAT) that is evolutionarily conserved across eukaryotes, with two homologs (Kat2a and Kat2b) identified in humans and one (Gcn5) in . Gcn5 contains a P300/CBP-associated factor (PCAF) domain, a Gcn5-N-acetyltransferase (GNAT) domain, and a Bromodomain, allowing it to regulate gene expression through the acetylation of both histone and non-histone proteins. In , Gcn5 is crucial for embryonic development, with maternal Gcn5 supporting early development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!