New evidence indicates that neural activity regulates the expression of trophic factors in the brain but regulation of these molecules by select aspects of behaviour remains solely a fascinating possibility. We report that following training in the Morris water maze, a spatial memory task, the hippocampus and cerebellum of learning rats exhibited an increase in basic fibroblast growth factor messenger RNA. Basic fibroblast growth factor messenger RNA levels were higher during the learning of the task and decreased once asymptotic performance was reached, suggesting an involvement of basic fibroblast growth factor in learning/memory. An active control group, which exercised for the same time as the learning group but the spatial learning component of the task was minimized, exhibited a minor increase in basic fibroblast growth factor messenger RNA. The intensification of the physical activity component of the task by massed or intensive training resulted in greater increases in basic fibroblast growth factor messenger RNA for both learning and yoked groups, but levels of basic fibroblast growth factor messenger RNA in the learning group remained higher than yoked only in the cerebellum. Changes in basic fibroblast growth factor were accompanied by an increase in astrocyte density in the hippocampus in agreement with described roles of basic fibroblast growth factor in astrocyte proliferation/reactivity. Results suggest that learning potentiates the effects of physical activity on trophic factor induction in select brain regions. Trophic factor involvement in behaviour may provide a molecular basis for the enhanced cognitive function associated with active lifestyles, and guide development of strategies to improve rehabilitation and successful ageing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0306-4522(97)00576-9 | DOI Listing |
J Clin Endocrinol Metab
January 2025
Department of Endocrinology, Key Laboratory of Endocrinology, State Key Laboratory of Complex Severe and Rare Diseases, Dongcheng District, National Commission of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China.
Context: Phosphate homeostasis was compromised in tumor-induced osteomalacia (TIO) due to increased fibroblast growth factor 23 (FGF23) secretion. Nevertheless, the glucose metabolic profile in TIO patients has not been investigated.
Objectives: This work aimed to clarify the glucose metabolic profiles in TIO patients and explore their interaction with impaired phosphate homeostasis.
Cell Biol Int
January 2025
Microscopy and Microanalysis Center, Institute of Biosciences, Letters and Exact Sciences (IBILCE), São Paulo State University (Unesp), São José do Rio Preto, SP, Brazil.
Mammary glands development is influenced by endocrine signaling, which remodels epithelial and stromal compartments. Reactive stroma phenotype is observed when stromal disturbances occur, leading to changes in extracellular matrix composition and occurrence of reactive cell types. One of the triggers of these alterations is endocrine-disrupting chemical exposure, such as bisphenol A (BPA).
View Article and Find Full Text PDFJ Intensive Med
January 2025
Department of Critical Care Medicine, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
Background: Cholestasis plays a critical role in sepsis-associated liver injury (SALI). Intestine-derived fibroblast growth factor 19 (FGF19) is a key regulator for bile acid homeostasis. However, the roles and underlying mechanisms of FGF19 in SALI are still unclear.
View Article and Find Full Text PDFBio Protoc
January 2025
Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
Recurrent hormone receptor-positive (HR+) breast cancer is a leading cause of cancer mortality in women. Recurrence and resistance to targeted therapies have been difficult to study due to the long clinical course of the disease, the complex nature of resistance, and the lack of clinically relevant model systems. Existing models are limited to a few HR+ cell lines, organoid models, and patient-derived xenograft models, all lacking components of the human tumor microenvironment.
View Article and Find Full Text PDFLife Metab
June 2024
Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China.
Skeletal muscle plays a vital role in the regulation of systemic metabolism, partly through its secretion of endocrine factors which are collectively known as myokines. Altered myokine levels are associated with metabolic diseases, such as type 2 diabetes (T2D). The significance of interorgan crosstalk, particularly through myokines, has emerged as a fundamental aspect of nutrient and energy homeostasis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!