Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Human immunodeficiency virus type 1 is resistant to 3'-azido-3'-deoxythymidine (AZT) when four amino acid substitutions (D67N, K70R, T215F, and K219Q) are present simultaneously in its reverse transcriptase. Wild-type and AZT-resistant reverse transcriptases show identical binding to a 3'-azido-3'-deoxythymidine 5'-monophosphate (AZTMP)-terminated primer/RNA template. On DNA templates, the equilibrium dissociation constant (KD) for primer/template and AZT-resistant reverse transcriptase (RT) (KD = 4.1 nM) is similar to that of the wild-type enzyme (KD = 6.2 nM). However, koff is 4-25-fold lower for the AZT-resistant enzyme than for the wild-type enzyme, depending on the nucleotide and the template. The kinetic decay of a wild-type RT/primer/AZTMP-terminated DNA template complex is biphasic. Seventy percent of the initial complex decays with a rate constant greater than 0.05 s-1, and 30% with a rate constant of 0.0017 s-1. Decay of an AZT-resistant RT/AZTMP-terminated primer/DNA template complex is monophasic, with a rate constant of 0.0018 s-1. The last two nucleotides at the 3' end of the AZTMP-terminated DNA primer in complex with AZT-resistant RT, but not wild-type RT, and a DNA template are protected from exonuclease digestion, suggesting that enhanced binding of the 3' end of the AZTMP-terminated DNA primer to reverse transcriptase is involved in the mechanism of AZT resistance by human immunodeficiency virus type 1.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.273.23.14596 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!