The objective of this study was to assess the protein quality of the myofibrillar and connective tissue proteins of chicken gizzard. Protein fractions were isolated from White Leghorn chicken gizzards and quantified by detailed amino acid analysis. This quantification involved repeated extractions of ground gizzards first with Triton X-100, then with low ionic strength imidazole-buffered saline (pH 7.1), followed by either 2% SDS or by 5 M guanidine hydrochloride. The total soluble intracellular protein fraction averaged 86.3% of the total protein and the insoluble extracellular connective tissue proteins comprised the remaining 13.7%. These fractions differed significantly in their essential amino acid (EAA) profiles, with the soluble intracellular fraction having the highest percentage EAA9 (48.6 to 49.0%) and the insoluble connective tissue fraction varying from 20.8 to 23%, compared to the FAO/WHO reference pattern value of 33.9% for a 2- to 5-yr-old child. Calculated protein efficiency ratios (PER) for intracellular proteins averaged 3.02 compared with a value of 1.65 for the extracellular matrix proteins. These results provide an accurate assessment of the protein quality of smooth muscle proteins of chicken gizzard and may prove valuable for industrial control of the amount of connective tissue added to formulations of meats and poultry products.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/ps/77.5.770 | DOI Listing |
Sleep Breath
January 2025
Department of Pulmonary and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, No.1 Da Hua Road, Dong Dan, Dongcheng District, Beijing, 100730, PR China.
Purpose: To investigate the relationship between obstructive sleep apnea hypopnea syndrome (OSAHS) severity and fat, bone, and muscle indices.
Methods: This study included 102 patients with OSAHS and retrospectively reviewed their physical examination data. All patients underwent polysomnography, body composition analysis, dual-energy X-ray absorptiometry, computed tomography (CT) and blood test.
Rheumatol Int
January 2025
School of Medicine, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia.
This study aims to review the literature and estimate the global pooled prevalence of interstitial lung disease among patients with rheumatoid arthritis (RA-ILD). The influence of risk factors like geography, socioeconomic status, smoking and DMARD use will be explored. A systematic review was performed according to the PRISMA and JBI guidelines.
View Article and Find Full Text PDFArch Dermatol Res
January 2025
Burn and Wound Repair Center, The Third Hospital of Hebei Medical University, No. 139, Ziqiang Road, Shijiazhuang, Hebei Province, 050035, China.
This study aimed to investigate the role of transforming growth factor-beta 3 (TGF-β3) secreted by adipose-derived stem cells (ADSCs) in suppressing melanin synthesis during the wound healing process, particularly in burn injuries, and to explore the underlying mechanisms involving the cAMP/PKA signaling pathway. ADSCs were isolated from C57BL/6 mice and characterized using flow cytometry and differentiation assays. A burn injury model was established in mice, followed by UVB irradiation to induce hyperpigmentation.
View Article and Find Full Text PDFBioelectromagnetics
January 2025
Seibersdorf Labor GmbH, Seibersdorf, Austria.
The electrical conductivity of human tissues is a major source of uncertainty when modelling the interactions between electromagnetic fields and the human body. The aim of this study is to estimate human tissue conductivities in vivo over the low-frequency range, from 30 Hz to 1 MHz. Noninvasive impedance measurements, medical imaging, and 3D surface scanning were performed on the forearms of ten volunteer test subjects.
View Article and Find Full Text PDFCell Biol Toxicol
January 2025
Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, No.555 Friendship East Road, South Gate, Beilin District, Xi'an, 710054, Shaanxi, China.
This study delved into the molecular mechanisms underlying mechanical stress-induced intervertebral disc degeneration (msi-IDD) through single-cell and high-throughput transcriptome sequencing in mouse models and patient samples. Results exhibited an upsurge in macrophage presence in msi-IDD intervertebral disc (IVD) tissues, with secreted phosphoprotein 1 (SPP1) identified as a pivotal driver exacerbating degeneration via the protein kinase RNA-like endoplasmic reticulum kinase/ activating transcription factor 4/ interleukin-10 (PERK/ATF4/IL-10) signaling axis. Inhibition of SPP1 demonstrated promising outcomes in mitigating msi-IDD progression in both in vitro and in vivo models.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!