Background: Granulocyte colony-stimulating factor (G-CSF) increases production and release of neutrophil precursors and activates multiple functions of circulating polymorphonuclear neutrophils (PMNs). G-CSF has therapeutic effects in many experimental models of sepsis; its actions with superimposed reperfusion insults are unknown. In traumatic conditions, G-CSF could exacerbate unregulated, PMN-dependent injury to otherwise normal host tissue or, it could partially reverse trauma-induced immune suppression, which may improve long-term outcome. This study tested whether stimulating PMN proliferation and function with G-CSF during recovery from trauma+sepsis potentiated reperfusion injury or whether it improved host defense.

Methods: Anesthetized swine were subjected to cecal ligation and incision, 35% hemorrhage, and 1 hr of hypotension. Resuscitation consisted of intravenous G-CSF (5 microg/kg) or placebo followed by shed blood and 40 mL/kg of lactated Ringer's solution. The control group received laparotomy only. G-CSF or placebo was given daily. Animals were killed at 4 days. Observers, blind to the protocol, graded autopsy samples for localization of infection and quality of abscess wall formation. Data included complete blood count, granulocyte oxidative burst after phorbol myristate acetate stimulation in vitro (GO2B), bronchoalveolar lavage (BAL) cell count, BAL noncellular protein, lipopolysaccharide-stimulated tumor necrosis factor production in whole blood in vitro (lipopolysaccharide-tumor necrosis factor), and lung tissue myeloperoxidase (MPO).

Results: Neutrophilia and localization of infection, were significantly improved by G-CSF. Variables altered by G-CSF, though not significantly, showed GO2B potential increased by 50%, lipopolysaccharide-tumor necrosis factor decreased by 50%, and improved survival versus placebo (100% vs. 70%). G-CSF did not increase lung MPO, BAL cell count, or BAL protein. Both arterial and venous O2 saturations were unaltered.

Conclusions: Our data show that G-CSF initiated at the time of resuscitation reduced the sequelae of posttrauma sepsis by increasing PMN proliferation and function without potentiating PMN-mediated lung reperfusion injury.

Download full-text PDF

Source
http://dx.doi.org/10.1097/00005373-199805000-00002DOI Listing

Publication Analysis

Top Keywords

necrosis factor
12
g-csf
10
granulocyte colony-stimulating
8
colony-stimulating factor
8
pmn proliferation
8
proliferation function
8
reperfusion injury
8
localization infection
8
bal cell
8
cell count
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!