Background: Conventional photocoagulation of subfoveal choroidal neovascularization (CNV) is often accompanied by visual loss due to thermal damage to adjacent retinal structures. Photodynamic therapy (PDT) allows vascular occlusion by selective photochemical destruction of vascular endothelial cells only. In a pilot study we evaluated the use of PDT in CNV.

Methods: In a clinical phase I/II trial, patients with subfoveal CNV were treated with PDT. Benzoporphyrin derivative monoacid ring A (BPD) was used as sensitizer at a drug dose of 6 mg/m2 or 12 mg/m2. Irradiation was performed via a diode laser emitting at 690 nm coupled into a slit lamp. Safe and maximum tolerated light doses were defined by dose escalation from 25 to 150 J/cm2. Photodynamic effects were documented ophthalmoscopically and angiographically.

Results: Sixty-one patients received a single course of BPD-PDT. Preliminary results suggest no damage to retinal structures within the treated area clinically. Retinal perfusion was not altered, while CNV demonstrated immediate absence of fluorescein leakage in the majority of lesions subsequent to PDT. At optimized parameters (6 mg/m2 and 50 J/cm2) complete cessation of leakage from classic CNV occurred in 100% of cases at 1 week and in 50% at week 4. In 70-80% of classic CNV, leakage reappeared at week 12, but markedly less than before treatment.

Conclusion: PDT allows temporary absence of leakage from CNV with preservation of visual acuity. The long-term prognosis of CNV secondary to age-related macular degeneration treated with repeated courses of PDT is being evaluated in a phase III trial.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s004170050092DOI Listing

Publication Analysis

Top Keywords

photodynamic therapy
8
subfoveal choroidal
8
choroidal neovascularization
8
retinal structures
8
pdt allows
8
classic cnv
8
cnv
7
pdt
6
therapy subfoveal
4
neovascularization clinical
4

Similar Publications

Emerging engineered nanozymes: current status and future perspectives in cancer treatments.

Nanoscale Adv

January 2025

Cancer Center, Department of Interventional Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College Hangzhou Zhejiang China

Composite nanozymes are composed of enzymes with similar or different catalytic capabilities and have higher catalytic activity than a single enzyme. In recent years, composite nanozymes have emerged as novel nanomaterial platforms for multiple applications in various research fields, where they are used to produce oxygen, consume glutathione, or produce toxic reactive oxygen species (ROS) for cancer therapy. The therapeutic approach using composite nanozymes is known as chemo-dynamic therapy (CDT).

View Article and Find Full Text PDF

The morbidity of oral disorders, including gingivitis, caries, endodontic-periodontal diseases, and oral cancer, is relatively high globally. Pathogenic cells are the root cause of many oral disorders, and oral therapies depend on eradicating them. Photodynamic therapy (PDT) has been established as a potential and non-invasive local adjuvant treatment for oral disorders.

View Article and Find Full Text PDF

This study is the first to use photodynamic therapy (PDT) mediated by curcumin and blue light for the treatment of recurrent herpes labialis. According to our study, PDT effectively accelerated lesion healing and reduced its recurrence. PDT may represent a promising, safe, and cost-effective treatment option for this challenging disease.

View Article and Find Full Text PDF

A juxtapapillary retinal capillary hemangioma (JRCH) is a rare vascular hamartoma located on the optic nerve head or adjacent region. While often associated with von Hippel-Lindau (VHL) disease, JRCHs can also occur as an isolated condition, presenting unique therapeutic challenges and risks of visual impairment. We report a case of a 50-year-old Malay gentleman with diabetes mellitus who presented with a non-progressive superior visual field defect in his left eye for three months.

View Article and Find Full Text PDF

A simple co-assembly strategy to control the dimensions of nanoparticles for enhanced synergistic therapy.

J Colloid Interface Sci

January 2025

Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao 266237 PR China. Electronic address:

Despite phthalocyanine has excellent photodynamic and photothermal effects as a photosensitizer and photothermal agent, hydrophobicity and aggregation limits its biological application. In this paper, phthalocyanine-cyanine co-assembled nanoparticles were designed to modulate the dimensions and morphology by introducing water-soluble cyanine. The cyanine had the ability to transform the nanomaterials from microrods to nanospheres, thus successfully constructing photoactivated nanomedicines.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!