The hepatocellular necrogenic and regenerative responses of newly weaned rats (21 days old) to a sublethal dose of thioacetamide (6.6 mmol kg-1) were studied in comparison to adult (6-month old rats), in terms of liver injury, antioxidant defense systems and cell proliferation. Hepatocellular necrosis, detected by serum aspartate aminotransferase, was less severe in newly weaned rats than in adult animals and was parallel to previous changes in the activity of microsomal FAD monooxygenase system responsible for thioacetamide biotransformation. Liver damage in hepatocytes from newly weaned rats was also detected by the decreased levels of glutathione and protein thiol groups (47%, p < 0.001 and 52%, p < 0.001 vs. untreated, respectively) and by the enhanced malondialdehyde production (334%, p < 0.001) and glutathione S-transferase activity (384%, p < 0.001). No significant differences were detected in these values when compared to adults. Changes in cytosolic and mitochondrial superoxide dismutase and catalase activities in hepatocytes from newly weaned rats at 24 h, following thioacetamide (49%, p < 0.001; 50% and 53%, p < 0.001 vs. untreated, respectively), were less severe against those in adult hepatocytes at 48 h of intoxication, and the increases in glutathione peroxidase and glutathione reductase activities were significantly lowered: 25% (p < 0.001) and 41% (p < 0.001), respectively. Post-necrotic DNA synthesis in hepatocytes from newly weaned rats peaked at 48 h of intoxication, while in adults a more intense peak appeared at 72 h preceded by a sharp decrease in tetraploid population. These differences indicate that the lower necrogenic response against the same dose of thioacetamide in newly weaned rats may be due to the lower rate of thioacetamide biotransformation and to the earlier onset of cell division. Accordingly, the growing liver from newly weaned rats presents advantages against the necrogenic aggression of thioacetamide, first, because the diminished activity of its specific microsomal detoxification system, and second because the earlier increase in the proliferative response prevents the progression of injury permitting an earlier restoration of liver function.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0167-4838(97)00218-5 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!