Changes in neuronal Ca2+ homeostasis were studied on freshly isolated dorsal root ganglion neurons of adult control mice and mice with streptozotocin (STZ)-induced diabetes. The cytoplasmic free Ca2+ concentration ([Ca2+]in) was measured using indo-1 based microfluorimetry. The participation of mitochondria in [Ca2+]in homeostasis was determined by investigation of changes which occurred after addition of mitochondrial protonophore (CCCP) to the extracellular solution. In control cells 10 microM CCCP applied before membrane depolarization induced an increase of the amplitude of depolarization-induced [Ca2+]in transients and disappearance of their delayed recovery, indicating the participation of mitochondria in fast uptake of Ca2+ ions from the cytosol during the peak of the transient and subsequent slow release them back during its decay. In diabetic animals the increase of the peak transient amplitude under the action of CCCP became diminished in small (nociceptive) neurons and the delayed elevation of [Ca2+]in disappeared in both large and small neurons. It is concluded that in diabetic conditions substantial changes occur in the Ca2+ homeostatic functions of mitochondria, manifested by decreased Ca2+ uptake in small neurons and depressed Ca2+ release into the cytosol in all types of neurons.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/00001756-199804200-00030 | DOI Listing |
FEBS J
January 2025
Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Italy.
The trimeric intracellular cation channel B (TRIC-B), encoded by TMEM38B, is a potassium (K) channel present in the endoplasmic reticulum membrane, where it counterbalances calcium (Ca) exit. Lack of TRIC-B activity causes a recessive form of the skeletal disease osteogenesis imperfecta (OI), namely OI type XIV, characterized by impaired intracellular Ca flux and defects in osteoblast (OB) differentiation and activity. Taking advantage of the OB-specific Tmem38b knockout mouse (Runx2Cre;Tmem38b; cKO), we investigated how the ion imbalance affects the osteogenetic process.
View Article and Find Full Text PDFPurinergic Signal
January 2025
Department of Biology, Faculty of Science, University of British Columbia Okanagan Campus, Kelowna, BC, V1V 1V7, Canada.
The two main glial cell types of the central nervous system (CNS), astrocytes and microglia, are responsible for neuroimmune homeostasis. Recent evidence indicates astrocytes can participate in removal of pathological structures by becoming phagocytic under conditions of neurodegenerative disease when microglia, the professional phagocytes, are impaired. We hypothesized that adenosine triphosphate (ATP), which acts as damage-associated molecular pattern (DAMP), when released at high concentrations into extracellular space, upregulates phagocytic activity of human astrocytes.
View Article and Find Full Text PDFBone
January 2025
Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology/School of Stomatology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China. Electronic address:
Porphyromonas gingivalis (P. gingivalis), a major pathogenic bacterium of chronic periodontitis and central player in the onset and subsequent progression of periodontitis, can cause alveolar bone resorption. The osteoblast dysfunction induced by P.
View Article and Find Full Text PDFInt J Ophthalmol
January 2025
Department of Ophthalmology, the Second Affiliated Hospital of Xi'an Medical University, Xi'an 710038, Shaanxi Province, China.
Glaucoma is a group of diseases characterized by progressive optic nerve degeneration, with the characteristic pathological change being death of retinal ganglion cells (RGCs), which ultimately causes visual field loss and irreversible blindness. Elevated intraocular pressure (IOP) remains the most important risk factor for glaucoma, but the exact mechanism responsible for the death of RGCs is currently unknown. Neurotrophic factor deficiency, impaired mitochondrial structure and function, disrupted axonal transport, disturbed Ca homeostasis, and activation of apoptotic and autophagic pathways play important roles in RGC death in glaucoma.
View Article and Find Full Text PDFCurr Probl Cardiol
January 2025
Department of Cardiology, Lanzhou University Second Hospital, Lanzhou, China. Electronic address:
Atrial fibrillation (AF) is tightly linked to mitochondrial dysfunction, calcium (Ca²⁺) imbalance, and oxidative stress. Mitochondrial Ca²⁺ is essential for regulating metabolic enzymes, maintaining the tricarboxylic acid (TCA) cycle, supporting the electron transport chain (ETC), and producing ATP. Additionally, Ca²⁺ modulates oxidative balance by regulating antioxidant enzymes and reactive oxygen species (ROS) clearance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!