Recent analysis has shown the presence of three sequences in the C-terminal 170 amino acids of human caldesmon (domain 4) which are involved in actin binding and tropomyosin-dependent inhibition of actomyosin ATPase. Two are in domain 4b (amino acids 715-793) and one is in domain 4a (amino acids 636-714). In the present work we have compared recombinant peptides containing either domain 4a or domain 4b to address the question as to whether domain 4a alone has any inhibitory activity. We have produced three new recombinant fragments containing domain 4a: H10 [622-708], H12 [506-708] and H13 [622-726] and we have characterized their functional properties. All three fragments bound to actin and tropomyosin. Caldesmon, but not domain 4b, was able to displace the fragments H10, H12 and H13 from actin. Thus the isolated caldesmon domain 4a peptides bind to the same region on actin as in the whole molecule while domains 4a and 4b occupy different sites on the actin molecule. Unlike domain 4b, none of the domain 4a fragments inhibited the actomyosin ATPase in the absence of tropomyosin. However both domain 4a and 4b fragments displayed an inhibitory activity in the presence of tropomyosin. H13 and H12 were more potent inhibitors than H10. Ca2+-calmodulin bound to H13 and reversed the inhibitory activity of this fragment but did not bind to H10 and H12. We conclude that domain 4a can act as an independent inhibitory actin-tropomyosin binding domain, but its properties are very different from the extreme C-terminal domain 4b.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1219494 | PMC |
http://dx.doi.org/10.1042/bj3320395 | DOI Listing |
Background: In Alzheimer's Disease trials, the Mini-Mental State Examination (MMSE) and Clinical Dementia Rating (CDR) are commonly utilized as inclusionary criteria at screening. These measures, however, do not always reaffirm inclusionary status at baseline. Score changes between screening and baseline visits may imply potential score inflation at screening leading to inappropriate participant enrollment.
View Article and Find Full Text PDFBackground: There is an urgent need for new therapeutic and diagnostic targets for Alzheimer's disease (AD). Dementia afflicts roughly 55 million individuals worldwide, and the prevalence is increasing with longer lifespans and the absence of preventive therapies. Given the demonstrated heterogeneity of Alzheimer's disease in biological and genetic components, it is critical to identify new therapeutic approaches.
View Article and Find Full Text PDFBackground: Immunotherapy of Alzheimer's disease (AD) is a promising approach to reducing the accumulation of beta-amyloid, a critical event in the onset of the disease. Targeting the group II metabotropic glutamate receptors, mGluR2 and mGluR3, could be important in controlling Aβ production, although their respective contribution remains unclear due to the lack of selective tools.
Method: 5xFAD mice were chronically treated by a brain penetrant camelid single domain antibody (VHH or nanobody) that is an activator of mGluR2.
Alzheimers Dement
December 2024
University of Florida / Center for Translational Research in Neurodegenerative Disease, Gainesville, FL, USA.
Background: Vaxxinity is developing an active immunotherapy targeting Tau for Alzheimer's disease (AD) and other tauopathies. VXX-301 is a multi-epitope vaccine designed to target the N-terminal and repeat domains of Tau. This design enables targeting multiple forms of Tau thought to contribute to Tau associated pathologies.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Centre for Addiction and Mental Health, Toronto, ON, Canada.
Background: Dysregulated GABA/somatostatin (SST) signaling has been implicated in psychiatric and neurodegenerative disorders. The inhibition of excitatory neurons by SST+ interneurons, particularly through α5-containing GABAA receptors (α5-GABAAR), plays a crucial role in mitigating cognitive functions. Previous research demonstrated that an α5-positive allosteric modulator (α5-PAM) mitigates working memory deficits and reverses neuronal atrophy in aged mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!