In the absence of arabinose and interactions with other proteins, AraC, the activator-repressor that regulates the araBAD operon in Escherichia coli, was found to prefer participating in DNA looping interactions between the two well-separated DNA half-sites, araI1 and araO2 at their normal separation of 211 base-pairs rather than binding to these same two half-sites when they are adjacent to one another. On the addition of arabinose, AraC preferred to bind to the adjacently located half-sites. Inverting the distally located araO2 half-site eliminated the looping preference. These results demonstrate that apo-AraC possesses an intrinsic looping preference that is eliminated by the presence of arabinose. We developed a method for the accurate determination of the relative affinities of AraC for the DNA half-sites araI1, araI2, and araO2 and non-specific DNA. These affinities allowed accurate calculation of basal level and induced levels of expression from pBAD under a wide variety of natural and mutant conditions. The calculations independently predicted the looping preference of apo-AraC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1006/jmbi.1998.1713 | DOI Listing |
SLAS Discov
January 2025
Biologics Engineering, Oncology R&D, AstraZeneca, Cambridge, UK. Electronic address:
Neurotrophic factor 3 (NTF3) is a cysteine knot protein and a member of the nerve growth factor (NGF) family of cytokines. NTF3 engages the Trk family of receptor tyrosine kinases, playing a pivotal role in the development and function of both the central and peripheral nervous systems. Its involvement in neuronal survival, differentiation, and growth links NTF3 to a spectrum of neurodegenerative diseases.
View Article and Find Full Text PDFJ Nanobiotechnology
January 2025
State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Discipline of Intelligent Instrument and Equipment, Department of Experimental Medicine, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, China.
The numerous high-risk carcinogenic types of human papillomavirus (HR-HPV) that lack vaccine protection underscore the urgent need to develop broader-spectrum HPV vaccines. This study addresses this need by focusing on HR-HPV types 53, 56, and 66, which are not currently targeted by existing vaccines. It introduces an effective method for their soluble expression, as well as that of their mutants, within an Escherichia coli expression system.
View Article and Find Full Text PDFJ Cardiovasc Electrophysiol
January 2025
Division of Cardiology, Geneva University Hospitals, Geneva, Switzerland.
Atrial flutter (AFL), defined as macro-re-entrant atrial tachycardia, is associated with debilitating symptoms, stroke, heart failure, and increased mortality. AFL is classified into typical, or cavotricuspid isthmus (CTI)-dependent, and atypical, or non-CTI-dependent. Atypical AFL is a heterogenous group of re-entrant atrial tachycardias that most commonly occur in patients with prior heart surgery or catheter ablation.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Henan Province Engineering Research Center of Innovation for Synthetic Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, 453003, Henan, China; School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, Henan, China. Electronic address:
The mechanisms underlying antigen receptor germline gene diversification have always been a topic of intensive study. Here, we discovered that the frequency of stem-loop sequences in the antigen receptor germline gene region is remarkably higher than the genomic background. By analyzing these stem-loop sequences' similarity and distribution patterns, we found that clustered regularly interspaced homologous stem-loop pairs (CRIHSP) are widely present on the germline genes of antigen receptors in different species.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Program in Genetics, Molecular, and Cellular Biology, Tufts University Graduate School of Biomedical Sciences, Boston, MA 02111.
CAG/CTG repeats are prone to expansion, causing several inherited human diseases. The initiating sources of DNA damage which lead to inaccurate repair of the repeat tract to cause expansions are not fully understood. Expansion-prone CAG/CTG repeats are actively transcribed and prone to forming stable R-loops with hairpin structures forming on the displaced single-stranded DNA (S-loops).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!