Insulin-induced translocation of protein kinase B to the plasma membrane in rat adipocytes.

Biochem Biophys Res Commun

Department of Cell and Molecular Biology, Lund University, Sweden.

Published: May 1998

Protein kinase B (PKB) has previously been shown to be activated in response to insulin and growth factor stimulation. The activation mechanism has been suggested to involve translocation of PKB to membranes, where it is phosphorylated and activated. Insulin-induced translocation of PKB has not been demonstrated in a physiological target cell. Therefore we have used the primary rat adipocyte to investigate insulin-induced translocation of PKB. In the presence of 1 nM insulin translocation of PKB was detected within 30 seconds and was blocked by wortmannin, a selective phosphatidylinositol 3-kinase inhibitor. This translocation was potentiated by the tyrosine phosphatase inhibitor vanadate. Subcellular localization studies revealed that PKB translocated to the plasma membrane.

Download full-text PDF

Source
http://dx.doi.org/10.1006/bbrc.1998.8602DOI Listing

Publication Analysis

Top Keywords

translocation pkb
16
insulin-induced translocation
12
protein kinase
8
plasma membrane
8
pkb
6
translocation
5
translocation protein
4
kinase plasma
4
membrane rat
4
rat adipocytes
4

Similar Publications

Protein Kinases in Obesity, and the Kinase-Targeted Therapy.

Adv Exp Med Biol

September 2024

Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.

The action of protein kinases and protein phosphatases is essential for multiple physiological responses. Each protein kinase displays its own unique substrate specificity and a regulatory mechanism that may be modulated by association with other proteins. Protein kinases are classified as dual-specificity kinases and dual-specificity phosphatases.

View Article and Find Full Text PDF

AKT, also known as protein kinase B (PKB), serves as a crucial regulator of numerous biological functions, including cell growth, metabolism, and tumorigenesis. Increasing evidence suggests that the kinase activity of AKT is regulated via ubiquitination by various E3 ligase enzymes in response to different stimuli. However, the molecular mechanisms underlying insulin-induced AKT ubiquitination are not yet fully understood.

View Article and Find Full Text PDF

L. (ginkgo) is a widely used medicinal plant around the world. Its leaves, which have been used as a traditional Chinese medicine, are rich in various bioactive components.

View Article and Find Full Text PDF

PEBP4 deficiency aggravates LPS-induced acute lung injury and alveolar fluid clearance impairment via modulating PI3K/AKT signaling pathway.

Cell Mol Life Sci

March 2024

Department of Pathophysiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, 461 BaYi Road, Nanchang, 330006, Jiangxi, P.R. China.

Acute lung injury (ALI) is a common clinical syndrome, which often results in pulmonary edema and respiratory distress. It has been recently reported that phosphatidylethanolamine binding protein 4 (PEBP4), a basic cytoplasmic protein, has anti-inflammatory and hepatoprotective effects, but its relationship with ALI remains undefined so far. In this study, we generated PEBP4 knockout (KO) mice to investigate the potential function of PEBP4, as well as to evaluate the capacity of alveolar fluid clearance (AFC) and the activity of phosphatidylinositide 3-kinases (PI3K)/serine-theronine protein kinase B (PKB, also known as AKT) signaling pathway in lipopolysaccharide (LPS)-induced ALI mice models.

View Article and Find Full Text PDF

Diabetes is caused by abnormal glucose metabolism, and muscle, the largest tissue in the human body, is largely involved. Urolithin A (UroA) is a major intestinal and microbial metabolite of ellagic acid and ellagitannins and is found in fruits such as strawberry and pomegranate. In this present study, we investigated the antidiabetic effects of UroA in L6 myotubes and in KK-A/Ta, a mouse model of type 2 diabetes (T2D).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!