This paper focuses on one aspect of occupational dioxin exposure that is novel and unexpected. Exposures in excess of the German threshold limit value of 50 pg international toxicity equivalent (I-TEQ)/m3 are very frequent, unpredictable, and sometimes very high--up to 6612 pg I-TEQ/m3--during thermal oxygen cutting at scrap metal and demolition sites. The same procedure involving virgin steel in steel trade and mass production of steel objects gave no such evidence, even though no final conclusions can be drawn because of the low number of samples analyzed. Low dioxin exposures during inert gas electric arc welding confirm previous literature findings, whereas soldering and thermal oxygen cutting in the presence of polyvinyl chloride give rise to concern. The consequences of occupational dioxin exposure were studied by analysis of the dioxin-blood concentration, the body burden, of men performing thermal oxygen cutting at scrap metal reclamation and demolition sites, in steel trade and producing plants as well as for industrial welders and white-collar workers. The results concerning body burdens are in excellent agreement with the dioxin exposure as characterized by dioxin air concentration in the workplace. The significant positive correlation between duration and frequency of performing thermal oxygen cutting at metal reclamation and demolition sites expressed in job-years and dioxin body burden speaks for the occupational origin of the observed overload after long times. The results reported here lead to consequences for occupational health, which are discussed and require immediate attention.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1533378 | PMC |
http://dx.doi.org/10.1289/ehp.98106715 | DOI Listing |
Int J Biol Macromol
January 2025
Research Department of Chemistry, Nehru Memorial College (Affiliated Bharathidasan University), Puthanampatti, Tamilnadu 621007, India. Electronic address:
This study successfully synthesised and characterised composites combining chitosan (CH), carboxymethyl cellulose (CMC), and various flavonoids (Fla). This innovative approach demonstrates the potential for developing functional materials with antioxidant and food preservation properties. The composites CH-Fla-CMC (1-5) was characterised using advanced techniques such as FT-IR, UV-Vis, XRD, SEM, TEM, and TGA, providing robust data on their structural, morphological, and thermal properties.
View Article and Find Full Text PDFMolecules
January 2025
Institute of Polymers, Composites and Biomaterials, National Research Council (IPCB-CNR), Portici, 80055 Naples, Italy.
To obtain sustainable food packaging materials, alternatives to traditional ones must be researched. In this work, two different kinds of zeolites, i.e.
View Article and Find Full Text PDFMolecules
January 2025
Institute of Food Engineering-FoodUPV, Universitat Politècnica de València, 46022 Valencia, Spain.
Almond shells (ASs) are a potential source of cellulose that could be obtained through sustainable methods for their valorisation. Biocomposites (BCs) from polyvinyl alcohol (PVA) and cellulose are interesting materials for developing sustainable packaging materials. BC based on PVA and AS cellulose were obtained by melt blending and compression moulding, by using subcritical water extraction at 160 or 180 °C, and subsequent bleaching with sodium chlorite (C) or hydrogen peroxide (P) to purify cellulose.
View Article and Find Full Text PDFLife (Basel)
December 2024
Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany.
Shrinkage, a heat-induced process, reorganizes collagen fibers, thereby reducing wound surface area. This technique, commonly applied in surgeries like periareolar mastopexy and skin grafting, is well-established. Despite its widespread use, modern imaging has recently enabled detailed observation of shrinkage's effects on tissue temperature and oxygenation.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Department of Chemistry and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
As reported during the last five years, SnSe is one of the leading thermoelectric (TE) materials with a very low lattice thermal conductivity. However, its elements are not as heavy as those of classical thermoelectric materials like PbTe or BiTe. Its outstanding TE properties were revealed after repeated purification steps to minimize the amount of oxygen contamination, followed by spark plasma sintering.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!