1. Many studies of the alpha7 subunit of the neuronal nicotinic acetylcholine receptor (nAChR) family have demonstrated that this alpha-bungarotoxin (alpha-BgTx)-binding neuronal receptor can participate in ACh-gated channels. Heterologous expression studies reveal that alpha7 subunits form homomeric channels of unusually high Ca2+ permeability. However, the physiological role of the alpha7 subunit in native neuronal nAChR channels is less clear. 2. We present evidence that the alpha7 subunit contributes to the function of at least three subtypes of native nAChR expressed by embryonic chick sympathetic neurones. These subtypes are functionally distinct from heterologously expressed homomeric alpha7 nAChRs as well as homomeric-like currents described in studies of hippocampal and parasympathetic neurones. 3. The proposed nAChRs differ from one another and from homomeric alpha7 nAChRs in their sensitivity to block by alpha7 subunit-specific antagonists: alpha-BgTx and methyllycaconitine (MLA). While MLA blocks 60 % of the macroscopic ACh response, alpha-BgTx inhibits a small component of the macroscopic current described by slow-on and slow-off kinetics. 4. Functional deletion of the alpha7 subunit by antisense oligonucleotide treatment eliminates the susceptibility of the nAChRs to block by both MLA and alpha-BgTx. 5. Single channel recordings combined with pharmacological and antisense-mediated 'deletion' techniques reveal that alpha-BgTx-sensitive alpha7-containing nAChRs have a small unitary conductance (18 pS), brief open time kinetics and relatively low open probability (Po). MLA-sensitive alpha7 nAChRs are characterized by a conductance of approximately 35 pS, intermediate burst duration, and a relatively high Po. 6. The third nAChR subtype deleted by alpha7 antisense treatment is characterized by a unitary conductance of 50 pS and prolonged opening duration. 7. We propose that these three populations of native alpha7-containing nAChRs are distinct heteromeric complexes that include other alpha and/or beta nAChR subunits.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2231006 | PMC |
http://dx.doi.org/10.1111/j.1469-7793.1998.651bm.x | DOI Listing |
J Cutan Pathol
January 2025
Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
Background: Merkel cell carcinoma (MCC) is a rare, aggressive cutaneous malignancy with neuroendocrine differentiation. Several molecular pathways have been implicated in MCC development and multiple cell-of-origin candidates have been proposed, including neural crest cells, which express acetylcholine receptors (AChRs). The role of nicotinic acetylcholine receptors (nAChRs) in MCC has not been explored.
View Article and Find Full Text PDFJ Biol Chem
January 2025
School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA; Department of Psychiatry, University of Utah, Salt Lake City, Utah, USA; George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah, USA.
Nicotinic acetylcholine receptors (nAChRs) are pentameric ligand-gated ion channels. In mammals, there are 16 individual nAChR subunits allowing for numerous possible heteromeric compositions. nAChRs assembled from α7 or α9 subunits will form as homopentamers.
View Article and Find Full Text PDFLife Sci
January 2025
State Key Laboratory of Natural Medicines, School of life science and technology, China Pharmaceutical University, Nanjing 211000, PR China. Electronic address:
Background And Purpose: Sepsis is a condition capable of causing systemic inflammation and metabolic reprogramming. Previous studies have shown that sinomenine (SIN) can mitigate sepsis by reducing inflammation, while the effect on metabolic reprogramming is unclear. The aim of this study is to investigate the function of SIN in metabolic reprogramming in sepsis.
View Article and Find Full Text PDFBiochemistry (Mosc)
November 2024
Laboratory of Regulation of Brain Neuronal Functions, Pavlov Institute of Physiology, Russian Academy of Sciences, Saint Petersburg, 199034, Russia.
Previous studies have shown that the combined effect of fetal hypoxia and maternal stress hormones predetermines tendency to nicotine addiction in adulthood. This study in rats aimed to investigate the effect of prenatal severe hypoxia (PSH) on acetylcholine metabolism in the developing brain, as well as on expression of acetylcholine receptors and in both the developing brain and adult brain structures following nicotine consumption. In the developing brain of PSH rats, no changes were found in the activity of choline acetyltransferase (ChAT) and acetylcholinesterase (AChE) or disturbances in the acetylcholine levels.
View Article and Find Full Text PDFbioRxiv
November 2024
MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom.
Pentameric ligand-gated ion channels (pLGICs) are cell surface receptors of crucial importance for animal physiology. This diverse protein family mediates the ionotropic signals triggered by major neurotransmitters and includes γ-aminobutyric acid receptors (GABARs) and acetylcholine receptors (nAChRs). Receptor function is fine-tuned by a myriad of endogenous and pharmacological modulators.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!