Off-axis crustal thickness across and along the east pacific rise within the MELT area.

Science

J. P. Canales and R. S. Detrick, Department of Geology and Geophysics, Woods Hole Oceanographic Institution, 360 Woods Hole Road, Woods Hole, MA 02543, USA. S. Bazin, A. J. Harding, J. A. Orcutt, Institute of Geophysics and Planetary.

Published: May 1998

Wide-angle seismic data along the Mantle Electromagnetic and Tomography (MELT) arrays show that the thickness of 0.5- to 1. 5-million-year-old crust of the Nazca Plate is not resolvably different from that of the Pacific Plate, despite an asymmetry in depth and gravity across this portion of the East Pacific Rise. Crustal thickness on similarly aged crust on the Nazca plate near a magmatically robust part of the East Pacific Rise at 17 degrees15'S is slightly thinner (5.1 to 5.7 kilometers) than at the 15 degrees55'S overlapping spreading center (5.8 to 6.3 kilometers). This small north-south off-axis crustal thickness difference may reflect along-axis temporal variations in magma supply, whereas the across-axis asymmetry in depth and gravity must be caused by density variations in the underlying mantle.

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.280.5367.1218DOI Listing

Publication Analysis

Top Keywords

crustal thickness
12
east pacific
12
pacific rise
12
off-axis crustal
8
crust nazca
8
nazca plate
8
asymmetry depth
8
depth gravity
8
thickness
4
thickness east
4

Similar Publications

Cretaceous coastal mountain building and potential impacts on climate change in East Asia.

Sci Adv

December 2024

Key Laboratory of Paleomagnetism and Tectonic Reconstruction, Ministry of Natural Resources, Institute of Geomechanics, Chinese Academy of Geological Sciences, Beijing 100081, China.

Crustal thickness and elevation variations control mountain building and climate change at convergent margins. As an archetypal Andean-type convergent margin, eastern Asia preserves voluminous magmas ideal for quantifying these processes and their impacts on climate. Here, we use Sr/Y and Ce/Y proxies to show that the crust experienced alternating thickening and thinning during the Late Mesozoic.

View Article and Find Full Text PDF

The subseafloor crustal biosphere: Ocean's hidden biogeochemical reactor.

Front Microbiol

November 2024

Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States.

Underlying the thick sediment layer in ocean basins, the flow of seawater through the cracked and porous upper igneous crust supports a previously hidden and largely unexplored active subsurface microbial biome. Subseafloor crustal systems offer an enlarged surface area for microbial habitats and prolonged cell residence times, promoting the evolution of novel microbial lineages in the presence of steep physical and thermochemical gradients. The substantial metabolic potential and dispersal capabilities of microbial communities within these systems underscore their crucial role in biogeochemical cycling.

View Article and Find Full Text PDF

Volcanic activity has been shown to affect Earth's climate in a myriad of ways. One such example is that eruptions proximate to surface ice will promote ice melting. In turn, the crustal unloading associated with melting an ice sheet affects the internal dynamics of the underlying magma plumbing system.

View Article and Find Full Text PDF

Moho topography yields insights into the evolution of the lithosphere and the strength of the lower crust. The Moho reflected phase (PmP) samples this key boundary and may be used in concert with the first arriving P phase to infer crustal thickness. The densely sampled station coverage of distributed acoustic sensing arrays allows for the observation of PmP at fine-scale intervals over many kilometers with individual events.

View Article and Find Full Text PDF

The fast increase of convergence rate between India and Eurasia around 65 million years ago (Ma)-from approximately 8 cm yr to a peak rate of approximately 18 cm yr-remains a complex geological event to explain, given the inherent uncertainty surrounding the tectonic history and the intricate interplay of forces influencing plate speed. Here we use a combination of geochemical analysis and geodynamic modelling to propose that this rapid convergence can be explained by sediment subduction derived from the northern Indian passive margin. Through isotope and trace element analysis, we find an enhanced contribution of terrigenous sediment melt to the mantle source of the Gangdese magmatic rocks around 65 Ma, concurrent with the acceleration of India-Eurasia convergence.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!