Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Interaction between molecular oxygen and the cationic free-base 5,10,15,20-tetrakis (4-N-methylpyridyl) porphyrin (H2TMpyP4+) complexed with [poly (dA-dT)]2, [poly (dG-dC)]2 and calf thymus DNA, has been monitored in air-saturated heavy water solutions through porphyrin triplet-triplet absorption and singlet oxygen luminescence. Three different rate constants of porphyrin triplet state quenching have been found which correspond to different accessibilities of molecular oxygen to porphyrins embedded in the duplexes. The longest triplet state lifetime (30 microseconds), found for porphyrin bound to [poly (dG-dC)]2, corresponds to molecules well protected from oxygen. This supports the hypothesis of an intercalative binding mode of the porphyrin between GC base-pairs ('type A' sites). The fraction fT delta of the porphyrin triplet states quenched by molecular oxygen with singlet oxygen generation, is unity. In [poly (dA-dT)]2-porphyrin complexes, two sites ('type B' and 'C' sites of interaction) are involved, yielding very different triplet state lifetimes (5.5 microseconds and 20.5 microseconds) and efficiencies of singlet oxygen generation (fT delta = 0.50 and 0.82). The fT delta decreases can likely be explained in terms of competition between energy and electron transfer from the porphyrin excited triplet state to molecular oxygen. All three types (A, B and C) of interaction sites can be expected in porphyrin-DNA complexes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s1011-1344(98)00068-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!