Hyperbaric O2 exposure causes seizures by an unknown mechanism. Cerebral blood flow (CBF) may affect seizure latency, although no studies have demonstrated a direct relationship. Awake rats (male, Sprague-Dawley, 350-450 g), instrumented for measuring electroencephalographic activity (EEG) and CBF (laser-Doppler flowmetry), were exposed to 100% O2 at 4 or 5 atm (gauge pressure) until EEG seizures. Compression with O2 caused vasoconstriction to about 70% of control flow that was maintained for various times. CBF then suddenly, but transiently, increased at a time that was reliably related to seizure latency (r=0.8, p<0.01). Additional animals were treated with agents that have diverse pharmacology and their effects on CBF and latency were measured. Glutamate receptor antagonists MK-801 (1 or 4 mg/kg) and ketamine (20-100 mg/kg) significantly increased CBF by 60-80% and decreased seizure latency from about 17+/-8 min (+/-S.D.) in controls to 5+/-1 and 6+/-2 min, respectively. In opposite, a nitric oxide synthase (NOS) inhibitor, N-nitro-L-arginine (NNA)(25 mg/kg) decreased CBF by about 25% and increased time to seizure to 60+/-16 min. If these effects occur in humans, non-invasive measurement of CBF could potentially improve the safety and reliability of hyperbaric O2 usage in clinical and diving applications. It also appears that the effect of drugs on seizure latency can be explained, at least in part, by their effect on CBF.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0006-8993(98)00083-3 | DOI Listing |
Brain
January 2025
Translational Neuroimaging Laboratory, Montreal Neurological Institute, H3A 2B4, Montreal, Canada.
Plasma phosphorylated tau biomarkers open unprecedented opportunities for identifying carriers of Alzheimer's disease pathophysiology in early disease stages using minimally invasive techniques. Plasma p-tau biomarkers are believed to reflect tau phosphorylation and secretion. However, it remains unclear to what extent the magnitude of plasma p-tau abnormalities reflects neuronal network disturbance in the form of cognitive impairment.
View Article and Find Full Text PDFAm J Hosp Palliat Care
January 2025
Department of Pediatrics, University of Chicago, Comer Children's Hospital, Chicago, IL, USA.
Pediatric neuro-oncology patients have one of the highest mortality rates among all children with cancer. Our study examines the potential relationship between palliative care consultation and intensity of in-hospital care and determines if racial and ethnic differences are associated with palliative care consultations during their terminal admission. Retrospective observational study using the Pediatric Health Information System (PHIS) database with data from U.
View Article and Find Full Text PDFNeuro Oncol
January 2025
Department of Medicine, Division of Experimental Medicine, McGill University.
Background: Glioblastoma is an aggressive brain cancer with a 5-year survival rate of 5-10%. Current therapeutic options are limited, due in part to drug exclusion by the blood-brain barrier, restricting access of targeted drugs to the tumor. The receptor for the type 1 insulin-like growth factor (IGF-1R) was identified as a therapeutic target in glioblastoma.
View Article and Find Full Text PDFNeurology
February 2025
School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia.
Background And Objectives: Lipid metabolism in older adults is affected by various factors including biological aging, functional decline, reduced physiologic reserve, and nutrient intake. The dysregulation of lipid metabolism could adversely affect brain health. This study investigated the association between year-to-year intraindividual lipid variability and subsequent risk of cognitive decline and dementia in community-dwelling older adults.
View Article and Find Full Text PDFNeurol Neuroimmunol Neuroinflamm
March 2025
Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt- Universität zu Berlin.
Background And Objectives: Cognitive deficits represent a major long-term complication of anti-leucine-rich, glioma-inactivated 1 encephalitis (LGI1-E). Although severely affecting patient outcomes, the structural brain changes underlying these deficits remain poorly understood. In this study, we hypothesized a link between white matter (WM) networks and cognitive outcomes in LGI1-E.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!