A clonal variant of serotype M1 group A streptococcus, strain 90-131, disseminated to several continents, where it was associated with severe systemic infections and toxic shock. Although this strain harbours the speA gene and is efficiently internalized by human epithelial cells, clinical isolates often fail to express the erythrogenic toxin under laboratory growth conditions. Cultures of strain 90-131 were observed to phase vary between small, dry, compact and larger, more mucoid colonies. The former were shown to be poorly internalized by epithelial cells. Analysis of RNA by Northern hybridization demonstrated that the emml, hasA and speA genes were weakly transcribed in cultures derived from the small colonies and highly transcribed in those derived from the large colonies. An insertion mutation in mga (the multigene activator) downregulated the invasion of epithelial cells and the transcription of emm1 and hasA, but had little impact on the transcription of speA. These are the first data to suggest the existence of a common regulatory circuit linking intracellular invasion, M protein, hyaluronic acid capsule and erythrogenic toxin expression by group A streptococcus. Moreover, the genetic instability of toxin expression exhibited by this serotype may impact on laboratory studies that attempt to associate toxin production with toxic shock.

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.1365-2958.1998.00786.xDOI Listing

Publication Analysis

Top Keywords

erythrogenic toxin
12
toxin expression
12
epithelial cells
12
group streptococcus
8
strain 90-131
8
toxic shock
8
toxin
5
high-frequency intracellular
4
intracellular infection
4
infection erythrogenic
4

Similar Publications

Streptococcal pyrogenic exotoxin B is a superantigen that induces murine splenocyte proliferation and secretion of IL-2 and IFN-γ ex vivo.

FEMS Microbiol Lett

January 2024

Foodborne Toxin Detection & Prevention Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710, United States.

Streptococcus pyogenes is a significant human pathogen, producing a range of virulence factors, including streptococcal pyrogenic exotoxin B (SpeB) that is associated with foodborne outbreaks. It was only known that this cysteine protease mediates cleavage of transmembrane proteins to permit bacterial penetration and is found in 25% of clinical isolates from streptococcal toxic shock syndrome patients with extreme inflammation. Its interaction with host and streptococcal proteins has been well characterized, but doubt remains about whether it constitutes a superantigen.

View Article and Find Full Text PDF

Background: Streptococcus pyogenes (group A streptococci; GAS) is the main causative pathogen of monomicrobial necrotizing soft tissue infections (NSTIs). To resist immuno-clearance, GAS adapt their genetic information and/or phenotype to the surrounding environment. Hyper-virulent streptococcal pyrogenic exotoxin B (SpeB) negative variants caused by covRS mutations are enriched during infection.

View Article and Find Full Text PDF

T-cell receptor Vβ8 for detection of biologically active streptococcal pyrogenic exotoxin type C.

J Dairy Sci

October 2023

Western Regional Research Center, Foodborne Toxin Detection and Prevention Research Unit, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710.

Streptococcus pyogenes is an important human pathogen, commonly spread by airborne droplets but also by ingestion of contaminated food. Apart from causing infection, this pathogen produces 13 distinct types of streptococcal pyrogenic exotoxins (SPE). The current method for detection cannot distinguish between the biologically active form of SPE that has been reported to cause foodborne outbreaks and the inactivated toxin that poses no health risk.

View Article and Find Full Text PDF

Severe bacterial or viral infections can induce a state of immune hyperactivation that can culminate in a potentially lethal cytokine storm. The classic example is toxic shock syndrome, a life-threatening complication of Staphylococcus aureus or Streptococcus pyogenes infection, which is driven by potent toxins known as superantigens (SAgs). SAgs are thought to promote immune evasion via the promiscuous activation of T cells, which subsequently become hyporesponsive, and act by cross-linking major histocompatibility complex class II molecules on antigen-presenting cells to particular β-chain variable (TRBV) regions of αβ T cell receptors (TCRs).

View Article and Find Full Text PDF

This paper presents the case of a patient who developed acute kidney injury and nephrotic syndrome following streptococcal cutaneous infection. He presented with microhematuria, severe proteinuria and systemic edema 5 days after infection. Blood examination showed elevated creatinine level, hypocomplementemia, and elevated anti-streptolysin O level.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!