Regulation of cell proliferation and urokinase plasminogen activation of human breast epithelial cells by carrageenans.

Int J Oncol

Unite de Dynamique des Cellules Embryonnaires et Cancereuses (EA 1033), Centre de Biologie Cellulaire, Universite des Sciences et Technologies de Lille, 59655 Villeneuve d'Ascq Cedex, France.

Published: June 1998

Carrageenans, a family of polysulphated carbohydrates, are able to inhibit the binding to cells of growth factors such as transforming growth factor 1 (TGF 1), fibroblast growth factor-2 (FGF-2) and platelet-derived growth factor (PDGF) and so modulate cell invasion and proliferation. We studied the effects of carrageenans on the proliferation and on the uPA/PAI-1 system in breast epithelial cells. Carrageenans were able to inhibit the proliferation of both normal breast epithelial cells (NBEC) and breast epithelial cancer cell lines (MDA-MB-231 and MCF-7) but could only inhibit the uPA activity in the MDA-MB-231 cells. Moreover, carrageenans inhibited FGF-2 binding in all three cell types, suggesting that they regulate cell proliferation and uPA/PAI-1 system through two distinct mechanisms. These molecules could be considered as potentially useful anti-cancer agents.

Download full-text PDF

Source
http://dx.doi.org/10.3892/ijo.12.6.1397DOI Listing

Publication Analysis

Top Keywords

breast epithelial
16
epithelial cells
12
cells carrageenans
12
cell proliferation
8
growth factor
8
proliferation upa/pai-1
8
upa/pai-1 system
8
proliferation
5
cells
5
carrageenans
5

Similar Publications

In vitro antitumor effects of methanolic extracts of three Ganoderema mushrooms.

Sci Rep

January 2025

Botany and Microbiology Department, Faculty of Science, Damietta University, New Damietta, 34517, Egypt.

Ganoderma mushrooms have a variety of pharmacological activities and may have antitumor effects. Therefore, the antitumor activity of the methanolic fruiting body extracts of three Ganoderma spp. will be evaluated by estimating cell viability, cell cycle parameters and the mode of cellular death.

View Article and Find Full Text PDF

Some novel sulphonyl thiourea derivatives (7a-m) containing 4,6-diarylpyrimidine rings were designed and synthesized using a one-pot procedure. These compounds exhibited remarkable dual inhibitory activity against human carbonic anhydrase CA I, CA II, CA IX, and XII isoenzymes and some cancer cell lines. Among them, some thioureas had significantly more potent inhibitory activities in the order of 7l > 7c > 7f (against the CA I isoform), 7f > 7b > 7c (against the CA II isoform), 7c > 7g > 7a > 7b (against the CA IX isoform), and 7d > 7c > 7g > 7f (against the CA XII isoform).

View Article and Find Full Text PDF

HER2-positive (+) breast cancer is an aggressive disease with poor prognosis, a narrative that changed drastically with the advent and approval of trastuzumab, the first humanized monoclonal antibody targeting HER2. In addition to another monoclonal antibody, more classes of HER2-targeted agents, including tyrosine kinase inhibitors, and antibody-drug conjugates were developed in the years that followed. While these potent therapies have substantially improved the outcome of patients with HER2+ breast cancer, resistance has prevailed as a clinical challenge ever since the arrival of targeted agents.

View Article and Find Full Text PDF

This chapter reviews tumor-associated myeloid cells, including macrophages, neutrophils, and other innate immune cells, and their multifaceted roles in supporting breast cancer progression and metastasis. In primary tumors, myeloid cells play key roles in promoting tumor epithelial-mesenchymal transition (EMT) and invasion. They can facilitate intravasation (entry into the bloodstream) and colonization, disrupting the endothelial cell layer and reshaping the extracellular matrix.

View Article and Find Full Text PDF

Metabolic Reprogramming and Adaption in Breast Cancer Progression and Metastasis.

Adv Exp Med Biol

January 2025

Department of Molecular Biology, Princeton University, Princeton, NJ, USA.

Recent evidence has revealed that cancer is not solely driven by genetic abnormalities but also by significant metabolic dysregulation. Cancer cells exhibit altered metabolic demands and rewiring of cellular metabolism to sustain their malignant characteristics. Metabolic reprogramming has emerged as a hallmark of cancer, playing a complex role in breast cancer initiation, progression, and metastasis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!