DNA repair defect in poly(ADP-ribose) polymerase-deficient cell lines.

Nucleic Acids Res

UPR 9003 du Centre National de la Recherche Scientifique, Laboratoire Conventionné avec le Commissariat à l'Energie Atomique, Ecole Supérieure de Biotechnologie de Strasbourg, Boulevard Sébastien Brant, F-67400 Illkirch-Graffenstad, France.

Published: June 1998

To investigate the physiological function of poly(ADP-ribose) polymerase (PARP), we used a gene targeting strategy to generate mice lacking a functional PARP gene. These PARP -/- mice were exquisitely sensitive to the monofunctional-alkylating agent N -methyl- N -nitrosourea (MNU) and gamma-irradiation. In this report, we have analysed the cause of this increased lethality using primary and/or spontaneously immortalized mouse embryonic fibroblasts (MEFs) derived from PARP -/- mice. We found that the lack of PARP renders cells significantly more sensitive to methylmethanesulfonate (MMS), causing cell growth retardation, G2/M accumulation and chromosome instability. An important delay in DNA strand-break resealing was observed following treatment with MMS. This severe DNA repair defect appears to be the primary cause for the observed cytoxicity of monofunctional-alkylating agents, leading to cell death occurring after G2/M arrest. Cell viability following MMS treatment could be fully restored after transient expression of the PARP gene. Altogether, these results unequivocally demonstrate that PARP is required for efficient base excision repair in vivo and strengthens the role of PARP as a survival factor following genotoxic stress.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC147627PMC
http://dx.doi.org/10.1093/nar/26.11.2644DOI Listing

Publication Analysis

Top Keywords

parp gene
12
dna repair
8
repair defect
8
parp
8
parp -/-
8
-/- mice
8
defect polyadp-ribose
4
polyadp-ribose polymerase-deficient
4
cell
4
polymerase-deficient cell
4

Similar Publications

Ovarian cancer is a deadly gynecological disease with frequent recurrence. Current treatments for patients include platinum-based therapy regimens with PARP inhibitors specific for HR-deficient high-grade serous ovarian cancers (HGSOCs). Despite initial effectiveness, patients inevitably develop disease progression as tumor cells acquire resistance.

View Article and Find Full Text PDF

DNA damage response mutations enhance the antitumor efficacy of ATR and PARP inhibitors in cholangiocarcinoma cell lines.

Oncol Lett

March 2025

Program in Translational Medicine, Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samutprakarn 10540, Thailand.

Cholangiocarcinoma (CCA) is a biliary tract carcinoma that is challenging to treat due to its heterogeneity and limited treatment options. Genetic alterations in DNA damage response (DDR) pathways and homologous recombination (HR) defects are common in CCA. This has prompted interest in the use of ataxia telangiectasia and Rad3-related protein (ATR) and poly(ADP-ribose) polymerase (PARP) inhibitors to treat CCA.

View Article and Find Full Text PDF

Background: Li-Fraumeni syndrome (LFS) is an autosomal dominant tumor predisposition syndrome characterized by a high familial incidence of various malignancies. It results from pathogenic/likely pathogenic heterozygous constitutional variants of the TP53 gene. Due to impaired DNA damage repair, conventional cytotoxic therapies or radiotherapy should be avoided whenever feasible to mitigate the high incidence of treatment-related secondary malignancies in these patients.

View Article and Find Full Text PDF

Background: ARPC1B has been identified as a key regulator of malignant biological behavior in various tumors. However, its specific role in clear cell renal cell carcinoma (ccRCC) remains poorly understood. This study aims to evaluate the influence of ARPC1B on the prognosis and disease progression in ccRCC patients.

View Article and Find Full Text PDF

Cervical cancer is the fourth most common cancer among women globally, and studies have shown that genetic variants play a significant role in its development. A variety of germline and somatic mutations are associated with cervical cancer. However, genomic data derived from these mutations have not been extensively utilized for the development of repurposed drugs for cervical cancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!