Lysozyme is increasingly expressed in macrophages in inflammatory response to bacterial LPS. In this study, we investigated the mechanisms that control expression of the lysozyme gene in myelomonocytic HD11 cells activated by LPS. Nuclear run-on transcription assays showed that LPS caused a 15-fold increase in the transcription rate of the lysozyme gene. However, Northern analyses with lysozyme cDNA and intron sequences revealed that the LPS-induced increase in nuclear lysozyme transcripts greatly exceeded the increase in transcription rate. Furthermore, nuclear lysozyme transcripts in untreated cells with a t(1/2) of <10 min were more unstable than those accumulated in LPS-activated cells. We suggested, therefore, that the increased lysozyme expression following LPS treatment was largely due to a nuclear stabilization of the primary transcript. Interestingly, the increase in stability of the lysozyme primary transcript was accompanied by changes in nuclear processing including an increase in poly(A) tail length, which gradually shortened after entering the cytoplasm. The long lysozyme poly(A) tail, however, did not result in any increase in polysomal recruitment for translation or in stability of the cytoplasmic lysozyme mRNA.

Download full-text PDF

Source

Publication Analysis

Top Keywords

lysozyme gene
12
myelomonocytic hd11
8
hd11 cells
8
increase transcription
8
transcription rate
8
nuclear lysozyme
8
lysozyme transcripts
8
lysozyme
7
posttranscriptional lipopolysaccharide
4
lipopolysaccharide regulation
4

Similar Publications

The current study had aimed to assess the long-term dietary supplementation with Melaleucae aetheroleum, tea tree essential oil (TTO). The impact on growth performance, biochemical indices, immune function, oxidant/antioxidant activity, gene expression, histopathology, and resistance against Aeromonas sobria in Nile tilapia (Oreochromis niloticus) was investigated. Four groups (with five replicates; G1 (control group, G2, G3, and G4) of Nile tilapia received diets enriched with TTO (doses of 0.

View Article and Find Full Text PDF

Nanoparticle-mediated delivery of nucleic acids and proteins into intact plants has the potential to modify metabolic pathways and confer desirable traits in crops. Here we show that layered double hydroxide (LDH) nanosheets coated with lysozyme are actively taken up into the root tip, root hairs and lateral root junctions by endocytosis, and translocate via an active membrane trafficking pathway in plants. Lysozyme coating enhanced nanosheet uptake by (1) loosening the plant cell wall and (2) stimulating the expression of endocytosis and other membrane trafficking genes.

View Article and Find Full Text PDF

SIGIRR plays a dual role in zebrafish infected with Edwardsiella piscicida: Boosting digestive system wellness and mitigating inflammation.

Fish Shellfish Immunol

December 2024

Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, 434024, China. Electronic address:

Single immunoglobulin interleukin-1 receptor-associated protein (SIGIRR) negatively regulates the inflammatory response induced by bacterial infection by inhibiting the excessive synthesis of inflammatory mediators and overactivation. This inhibitory mechanism reduces the fish's susceptibility to pathogens and enhances survival rates. Zebrafish lacking the SIGIRR gene were generated using CRISPR/Cas9 gene knockout technology.

View Article and Find Full Text PDF

Butyrate is one of the most abundant short-chain fatty acids (SCFAs), which are important metabolites of dietary fiber by fermentation of gut commensals, and has been shown to be vital in maintaining host health. The present study mainly investigated how sodium butyrate (NaB) supplementation in the diet with high proportion of soybean meal (SBM) affected turbot. Four experimental diets were formulated: (1) fish meal (FM) based diet (control group), (2) SBM protein replacing 45% FM protein in the diet (high SBM group), (3) 0.

View Article and Find Full Text PDF

This study evaluated the efficacy of integrating artichoke (Cynara scolymus) leaf extract (CSLE) into the Nile tilapia (Oreochromis niloticus) diet to mitigate fluoride (FLR) adverse effects on growth, immune components, renal and hepatic function, and the regulation of oxidative stress, inflammation, and apoptosis-related genes. A 60-day feeding experiment was conducted with 240 O. niloticus fish separated into four groups as follows: a control group (CON) fed on a basic diet, a CSLE group receiving 300 mg CSLE/kg via the diet, a FLR group exposed to 6.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!