The manufacture of solid components with high permittivities epsilon r of 1-100 and differing conductivities sigma of 0-1.0 S/m has practical significance for fabricating applicators and phantoms in radiofrequency hyperthermia. For this purpose, various plastics (resins, polyurethane and silicone) were combined with additives (graphite and metal powder) and tested to assess their radiofrequency and mechanical characteristics and to identify manufacturing problems. Most of the plastics could be made highly dielectric and conductive by adding graphite in the range of muscle tissue (i.e. epsilon r approximately 80, sigma approximately 0.8 S/m). However, there are major differences between the materials with respect to mechanical behaviour, durability, feasibility of manufacture, and reproducibility. Manufacturing water-equivalent plastics (low conductivity sigma < 0.05 S/m and epsilon r value of 70-80) is particularly difficult. A less filled polyester resin in which concentration of brass powder can achieve an epsilon r value of up to 100 at low conductivity proved to be the only suitable medium. Such a plastic can be used for future applicator designs. Other materials of interest include plastics equivalent to lossy media (e.g. sigma = 0.45-0.55 S/m, epsilon r = 70-80), fat-equivalent plastics (polyurethane with graphite) and higher dielectric flexible plastics (silicone with brass powder).

Download full-text PDF

Source
http://dx.doi.org/10.3109/02656739809018223DOI Listing

Publication Analysis

Top Keywords

low conductivity
8
s/m epsilon
8
epsilon 70-80
8
brass powder
8
plastics
6
epsilon
5
solid materials
4
materials high
4
high dielectric
4
dielectric constants
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!