High-throughput robotic system for sequencing of microbial genomes.

Electrophoresis

QIAGEN GmbH, Hilden, Germany.

Published: April 1998

A high-throughput robotic workstation system was used for double-stranded plasmid DNA template preparation and sequencing reaction setup to streamline the sequencing process in genome projects. All 96-well miniprep kits that were tested provided high quality plasmid DNA suitable for fluorescent DNA sequencing. After quantitation in a 96-well UV spectrophotometer, the plasmid DNA was used as template to automatically set up sequencing reactions. The setup was controlled by spread sheets that were imported into the robotic system. We utilized this integrated system to prepare all necessary shotgun templates for our contributions to a number of large-scale genome projects as well as a full-length cDNA sequencing project.

Download full-text PDF

Source
http://dx.doi.org/10.1002/elps.1150190408DOI Listing

Publication Analysis

Top Keywords

plasmid dna
12
high-throughput robotic
8
robotic system
8
dna template
8
genome projects
8
sequencing
6
system
4
system sequencing
4
sequencing microbial
4
microbial genomes
4

Similar Publications

Effects of mirror-image nucleosides on DNA replication and transcription in human cells.

J Biol Chem

December 2024

School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, PR China; State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China. Electronic address:

Mirror-image nucleosides, as potential antiviral drugs, can inhibit virus DNA polymerase to prevent virus replication. Conversely, they may be inserted into the DNA strands during DNA replication or transcription processes, leading to mutations that affect genome stability. Accumulation of significant mutation damage in cells may result in cell aging, apoptosis, and even uncontrolled cell division.

View Article and Find Full Text PDF

Effect of a Mating Type Gene Editing in Using RNP/Nanoparticle Complex.

J Fungi (Basel)

December 2024

Mushroom Science Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong 27709, Republic of Korea.

Gene editing using CRISPR/Cas9 is an innovative tool for developing new mushroom strains, offering a promising alternative to traditional breeding methods that are time-consuming and labor-intensive. However, plasmid-based gene editing presents several challenges, including the need for selecting appropriate promoters for Cas9 expression, optimizing codons for the Cas9 gene, the unintended insertion of fragmented plasmid DNA into genomic DNA (gDNA), and regulatory concerns related to genetically modified organisms (GMOs). To address these issues, we utilized a Ribonucleoprotein (RNP) complex consisting of Cas9 and gRNA for gene editing to modify the A mating-type gene of .

View Article and Find Full Text PDF

Generation of transgenic chicken through ovarian injection.

Animal Model Exp Med

December 2024

Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China.

Background: Traditional DNA microinjection methods used in mammals are difficult to apply to avian species due to their unique reproductive characteristics. Genetic manipulation in chickens, particularly involving immature follicles within living ovaries, has not been extensively explored. This study seeks to establish an efficient method for generating transgenic chickens through ovarian injection, potentially bypassing the challenges associated with primordial germ cell (PGC) manipulation and fertilized egg microinjection.

View Article and Find Full Text PDF

Coselection of BAC for Escherichia coli chromosomal DNA multiplex automated genome engineering.

Biotechnol Lett

December 2024

Jiangsu Key Laboratory for Pathogens and Ecosystems, College of Life Sciences, Nanjing Normal University, No.1 Wenyuan Rd., Xixia District, Nanjing, 210023, Jiangsu, People's Republic of China.

Recombineering (recombination-mediated genetic engineering) is a powerful strategy for bacterial genomic DNA and plasmid DNA modifications. CoS-MAGE improved over MAGE (multiplex automated genome engineering) by co-electroporation of an antibiotic resistance repair oligo along with the oligos for modification of the Escherichia coli chromosome. After several cycles of recombineering, the sub-population of mutants were selected among the antibiotic resistant colonies.

View Article and Find Full Text PDF

Toxoplasmosis is a foodborne zoonotic parasitic disease caused by Toxoplasma gondii, which seriously threatens to human health and causes economic losses. At present, there is no effective vaccine strategy for the prevention and control of toxoplasmosis. T.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!