Menkes syndrome is an X-linked genetic copper deficiency that is usually fatal in early childhood. Milder variants exist, including occipital horn syndrome, which is primarily a connective tissue disorder. Mutations of the mottled locus in mice produce a wide range of copper-deficient phenotypes that are good models for human diseases. Understanding the nature of the defects has been greatly increased as a result of the identification of the gene affected in Menkes syndrome. The gene spans approximately 140 kilobases, contains 23 exons, and encodes a copper-transporting ATPase termed MNK that is thought to be involved in copper efflux from cells. More recent studies show that MNK is located primarily in the trans-Golgi compartment of Chinese hamster ovary cells. Copper-resistant cells overexpress MNK and can efflux more copper than parental cells, consistent with the copper efflux role proposed for MNK. Patients with Menkes syndrome are predicted to have little or no MNK activity, whereas patients with occipital horn syndrome have less severe mutations and some residual MNK activity is predicted. Similarly, the mottled mice mutants have a range of mutations in the MNK gene homologue. Complete loss of MNK, however, produces a fetal lethal phenotype in mice. A model is proposed to explain the wide range of phenotypes exhibited by the different mouse mutants. Further research into the cell biology of copper transport is expected to reveal more about the molecular basis of copper homeostasis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/ajcn/67.5.1022S | DOI Listing |
Biomolecules
January 2025
Bioscience, Biotechnology and Biomedical Engineering Research Area, Japan Advanced Institute of Science and Technology, Nomi 923-1211, Japan.
RNA editing is a significant mechanism underlying genetic variation and protein molecule alteration; C-to-U RNA editing, specifically, is important in the regulation of mammalian genetic diversity. The ability to define and limit accesses of enzymatic machinery to avoid the modification of unintended targets is key to the success of RNA editing. Identification of the core component of the apoB RNA editing holoenzyme, APOBEC, and investigation into new candidate genes encoding other elements of the complex could reveal further details regarding APOBEC-mediated mRNA editing.
View Article and Find Full Text PDFF1000Res
November 2024
Neonatal Intensive Care Unit, King Fahad Medical City, Riyadh, Saudi Arabia.
Am J Physiol Heart Circ Physiol
November 2024
Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, United States.
Thyroid hormone dysfunction is frequently observed in patients with chronic illnesses including heart failure, which increases the risk of adverse events. This study examined the effects of thyroid hormones (THs) on cardiac transverse-tubule (TT) integrity, Ca sparks, and nanoscale organization of ion channels in excitation-contraction (EC) coupling, including L-type calcium channel (Ca1.2), ryanodine receptor type 2 (RyR2), and junctophilin-2 (Jph2).
View Article and Find Full Text PDFBMJ Case Rep
October 2024
Department of Pediatrics, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
Neurol Sci
January 2025
Department of Neurology, West China Hospital, Sichuan University, Chengdu, China.
Background: Menkes Disease (MD) is a fatal X-linked recessive disorder caused by mutations in the ATP7A gene. Severe cases typically die before the age of three. Mild MD and occipital horn syndrome are variants of MD characterized by a less severe phenotype and longer survival.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!