Some organic solvents (2-10%) have been comparatively studied for their effect on purified transporting Ca2+, Mg(2+)-ATPase, solubilized from the plasma membrane of smooth muscle cells and on actomyosine ATPase of the smooth muscle. The inhibiting effect of solvents on the initial maximum specific activity of Ca2+, Mg(2+)-ATPase corresponds to the sequence dioxane > acetone > ethanol > dimethyl sulfoxide (DMSO). Like the case with Ca2+, Mg(2+)-ATPase, dioxane inhibits actomyosine ATPase; acetone, ethanol and DMSO stimulate ATP-hydrolase reaction which is catalyzed by the complex of contractile proteins. It is proved that the effect of the decrease of ATPase activity with decrease of incubation medium polarity is exceptionally determined by the value of incubation medium the dielectric permeability. This effect is independent of chemical nature of organic solvents which were used with the aim to obtain the corresponding values of D. It is supposed that the cause of activity inhibition of solubilized transporting Ca2+, Mg(2+)-ATPase under the effect of dioxane, acetone, ethanol and inhibition of activity of actomyosine ATPase as affected by dioxane is mainly connected with the increase of electrostatical interaction between opposity charged active centre of ATPase and the product (products) of ATP-hydrolase reaction (Mg ADP-, HPO4(2-)), which is induced by the decrease of incubation medium polarity (the decrease of D value). Stimulating effect of acetone and ethanol on actomyosine ATPase is probably determined by superposition of two components: that connected with direct effect of these solvents on the protein catalyst (interaction with enzyme with the future break of hydrogen and hydrophobic bonds in the protein and its "fluffing") and "electrostatic component" determined by the change of D value of the incubation medium. Possible role of electrostatic interactions between ATPases and reagents as the factor of non-specific control of catalytic activity of these enzymes is discussed.

Download full-text PDF

Source

Publication Analysis

Top Keywords

incubation medium
20
ca2+ mg2+-atpase
16
actomyosine atpase
16
acetone ethanol
16
medium dielectric
8
dielectric permeability
8
organic solvents
8
transporting ca2+
8
smooth muscle
8
dioxane acetone
8

Similar Publications

High-affinity VNARs targeting human hemoglobin: Screening, stability and binding analysis.

Int J Biol Macromol

January 2025

College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China. Electronic address:

Hemoglobin, composed of α- and β-chains, is essential for oxygen transport and is key in diagnosing and treating gastrointestinal and blood disorders. It also aids in detecting blood contamination and estimating transfusion volumes. Immunological methods, based on antigen-antibody interactions, are distinguished by their high sensitivity and accuracy.

View Article and Find Full Text PDF

CAM/CAD composites are widely used as dental restoration materials due to their resistivity to wear. The purpose of this study was to determine the effect of human gingival fibroblast cells on three different computer-aided design/computer-aided manufacturing (CAD/CAM) hybrid materials with resin-based composites (RBC) and to assess their stability following cell growth. The CAM/CAD dental materials were investigated in different conditions as follows: (i) cells (human gingival fibroblasts, HFIB-Gs) incubated over the material for each sample, denoted as A; (ii) reference, the raw material, denoted as B; and (iii) materials incubated in DMEM medium, denoted as C.

View Article and Find Full Text PDF

Nitrogen inputs for sustainable crop production for a growing population require the enhancement of biological nitrogen fixation. Efforts to increase biological nitrogen fixation include bioprospecting for more effective nitrogen-fixing bacteria. As bacterial nitrogenases are extremely sensitive to oxygen, most primary isolation methods rely on the use of semisolid agar or broth to limit oxygen exposure.

View Article and Find Full Text PDF

type F is a spore-forming bacterium that causes human illnesses, including food poisoning (FP) and non-foodborne gastrointestinal diseases. In this study, we evaluated the antimicrobial activities of 15 natural products against spore growth. Among them, garlic, onion juice, and undiluted essential oil constituents (EOCs) of clove, rosemary, and peppermint showed the strongest activity.

View Article and Find Full Text PDF

Screening of Lactic Acid Bacteria Isolated from Fermented Cowpea and Optimization of Biomass Production Conditions.

Foods

January 2025

State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang 330047, China.

Considering the four characteristics of strains, including acid production, acid tolerance, salt tolerance, and nitrite degradation rate, NCU006063 was selected as the fermentation agent, and the medium composition of NCU006063 was optimized using Plackett-Burman and central composite rotational design. Three of the seven factors studied in the Plackett-Burman design significantly affected the viable counts. A central composite rotational design was used to optimize the significant factors and generate response surface plots.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!