Complexation of Ni(II) with native state recombinant hemoglobin is shown to produce NH2-terminal deamination and globin cross-linking in the presence of the oxidant potassium peroxymonosulfate (OxoneTM). Both the oxidative deamination and cross-linking are exclusive to the beta chains. Recombinant hemoglobin mutants have been created to identify protein sequence requirements for these reactions. It was found that His-2 of the beta globin is required for redox active Ni(II) complexation, oxidative deamination, and cross-linking. The oxidative deamination results in the formation of a free carbonyl in place of the NH2-terminal amine of the beta chain. Most cross-linking of the beta globin occurs intramolecularly, forming beta globin dimers. Structural characterization of the beta globin dimers indicates the presence of heterogeneous cross-links within the central hemoglobin cavity between the NH2 terminus of one beta chain and the COOH-terminal region of the other.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.273.21.13037DOI Listing

Publication Analysis

Top Keywords

oxidative deamination
16
beta globin
16
recombinant hemoglobin
8
deamination cross-linking
8
beta chain
8
globin dimers
8
beta
7
deamination
5
cross-linking
5
globin
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!