The insulin-like growth factors I and II (IGF-I, -II) are circulating peptides known to participate in the regulation of metabolism, growth, and cellular differentiation. In the present study, "early cultured" (days 2-3 of culture) and "culture-activated" (days 6-7 of culture) rat hepatic stellate cells (HSCs) were analyzed for expression of individual components of the IGF axis. Northern blot analysis of IGF-I messenger RNA (mRNA) revealed transcripts of 7.5, 4, 2, and 1.0 to 1.5 kb in culture-activated HSCs, while early cultured HSCs did not express IGF-I mRNA. In culture-activated HSCs, an IGF-I secretion of 8.3+/-2.5 ng/10(6) cells per 24 hours was determined radioimmunologically. In media from early cultured HSCs, IGF-I was not detectable. The IGF-I receptor (IGF-I-R) mRNA expression was three-fold higher in early cultured HSCs than in culture-activated HSCs. By immunohistochemistry, a decrease of IGF-I-R expression of HSCs in vivo following CCl4-induced liver damage was noted as well. IGF binding proteins (IGFBPs) were detected in conditioned media from HSCs by 125I-IGF-I ligand blotting at apparent molecular masses of 24 and 41 to 45 kd that were immunologically identified as IGFBP-4 and -3, respectively. Synthesis of these IGFBPs increased with time of culture. At neutral pH, no IGFBP proteolysis was observed in conditioned media of early cultured and culture-activated HSCs, whereas at acidic pH, protease activities against IGFBP-3 and -4 were detectable. IGFBP protease activities were completely abolished by inhibitors of aspartyl and cysteine proteases. Addition of 100 nmol/L IGF-I stimulated cell proliferation of early cultured HSCs 5.6+/-1.1- and 4.6+/-0.2-fold as measured by [3H]thymidine and 5-bromo-2'-deoxyuridine incorporation, respectively. In culture-activated HSCs, proliferation was increased 1.2+/-0.1-fold in the presence of 100 nmol/L IGF-I in both proliferation assays. It can be concluded that due to a higher expression of the IGF-I-R and lower levels of IGFBPs, early cultured HSCs are more susceptible to the mitogenic actions of IGFs than the culture-activated HSCs. The present data suggest a role for the IGF axis components in the initiation rather than the perpetuation of HSC proliferation during hepatic fibrogenesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/hep.510270513 | DOI Listing |
Hepatol Commun
December 2024
Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK.
Background: The farnesoid X receptor (FXR) is a leading therapeutic target for metabolic dysfunction-associated steatohepatitis (MASH)-related fibrosis. INT-767, a potent FXR agonist, has shown promise in preclinical models. We aimed to define the mechanisms of INT-767 activity in experimental MASH and dissect cellular and molecular targets of FXR agonism in human disease.
View Article and Find Full Text PDFCell Cycle
March 2024
Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
In chronic liver injury, quiescent hepatic stellate cells (HSCs) transdifferentiate into activated myofibroblast-like cells and produce large amounts of extracellular matrix components, e.g. collagen type 1.
View Article and Find Full Text PDFMol Biotechnol
February 2025
School of Pharmacy, Anhui Medical University, 81 Mei Shan Road, Hefei, 230032, Anhui, China.
In hepatic fibrosis (HF), hepatic stellate cells (HSCs) form the extracellular matrix (ECM), and the pathological accumulation of ECM in the liver leads to inflammation. Our previous research found that miR-324-3p was down-regulated in culture-activated human HSCs. However, the precise effect of miR-324-3p on HF has not been elucidated.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
October 2023
Department of Biochemistry & Molecular Biology, Medical School, Nantong University, Qi xiou Road 19, Nantong 226001, Jiangsu, China. Electronic address:
Obese patients usually have hyperleptinemia and are prone to develop liver fibrosis. Leptin is intimately linked to liver fibrogenesis, a multi-receptor-driven disease. Gα-Interacting Vesicle-associated protein (GIV) functions as a multimodular signal transducer and a guanine nucleotide exchange factor for Gi controling key signalings downstream of diverse receptors.
View Article and Find Full Text PDFBinding of lipopolysaccharide (LPS) to CD14 is required for its cellular effects via TLR4. A role of LPS/TLR4-mediated signaling in activated hepatic stellate cells (aHSCs), the major fibrogenic cells, in liver fibrosis has been reported. We investigated effects of LPS on carbon tetrachloride (CCl4)-induced fibrosis in CD14-knockout (KO) mice in vivo, and culture-activated HSCs in vitro.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!