The radionuclides used in nuclear medicine imaging emit numerous mono-energetic electrons responsible for dose heterogeneity at the cellular level. S(self) the self-dose per unit cumulated activity (which results from the radionuclide located in the target cell), and S(cross) the cross-dose per unit cumulated activity (which comes from the surrounding cells) delivered to a target cell nucleus by electron emissions of technetium-99m, iodine-123, indium-111, gallium-67 and thallium-201 were computed at the cellular level. An unbounded close-packed hexagonal cell arrangement was assumed, with the same amount of radioactivity per cell. Various cell sizes and subcellular distributions of radioactivity (nucleus, cytoplasm and cell membrane) were simulated. The results were compared with those obtained using conventional dosimetry. S(self) and S(cross) values depended closely on cell dimensions. While the self-dose depended on the tracer distribution, the latter affected the cross dose by less than 5%. When the tracer was on the cell membrane, the self-dose was particularly low compared to the cross-dose, as the self-dose to cross-dose ratio was always less than 11%. In the case of cytoplasmic or cell membrane distribution of radioactivity, conventional electron dosimetry slightly overestimated the dose absorbed by the target cell nucleus (by 1.08-to 1.7-fold). In contrast, conventional dosimetry strongly underestimated the absorbed dose (1.1- to 75-fold) when the radioactivity was located in the nucleus. The discrepancies between conventional and cellular dosimetry call for calculations at the cellular level for a better understanding of the biological effects of radionuclides used in diagnostic imaging.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s002590050218DOI Listing

Publication Analysis

Top Keywords

conventional dosimetry
12
cell nucleus
12
cellular level
12
target cell
12
cell membrane
12
cell
11
self-dose cross-dose
8
nucleus electron
8
electron emissions
8
unit cumulated
8

Similar Publications

Risk assessment and quality management in AIO based on CT-linac for nasopharyngeal carcinoma: An improved FMEA and FTA approach.

Med Phys

January 2025

State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China.

Article Synopsis
  • AIO radiotherapy integrates all conventional steps into one device, improving efficiency and reducing errors for cancer patients while facing challenges like software complexity and AI reliance.
  • A risk assessment using FMEA and FTA was conducted to evaluate the quality management measures for nasopharyngeal carcinoma treatment.
  • Results showed 86 failure modes identified, with risk priority numbers indicating varying levels of risk, emphasizing the importance of implementing quality management measures for safety.
View Article and Find Full Text PDF

Zeolites are a large family of minerals and the most studied is the naturally occurring clinoptilolite. They possess anti-inflammatory, antioxidant, and detoxifying properties which makes them valuable for medicinal use. Element analysis of zeolite's composition is necessary for its precise chemical characterization, and within this work development of a suspension method for the determination of manga nese, iron, and zinc by total reflection X-ray fluorescence spec-trometry (TXRF) was presented.

View Article and Find Full Text PDF

The rapid development of nanotechnology during the last two decades has created new opportunities to design and generate more advanced nanotheranostics with diversified capabilities for diagnosis, drug delivery, and treatment response monitoring in a single platform. To date, several approaches have been employed in order to develop nanotheranostics. The purpose of this review is to briefly discuss the key components of nanotheranostic systems, to present the conventional and upcoming imaging and therapeutic modalities that employ nanotheranostic systems, and to evaluate recent progress in the field of cancer nanotheranostic systems in the past five years (2020-2024).

View Article and Find Full Text PDF

Objective: In suspected acute ischemic stroke, it is now reasonable to expand the conventional "stroke protocol" (non-contrast computed tomography (NCCT), arterial CT angiography (CTA), and optionally CT perfusion (CTP)) to early and late venous head scans yielding a multiphase CTA (MP-CTA) to increase diagnostic confidence. Diagnostic reference levels (DRLs) have been defined for neither MP-CTA nor CTP. We therefore present dosimetry data, while also considering image quality, for a large, unselected patient cohort.

View Article and Find Full Text PDF

: Brain cancer is notoriously resistant to traditional treatments, including radiotherapy. Microbeam radiation therapy (MRT), arrays of ultra-fast synchrotron X-ray beams tens of micrometres wide (called peaks) and spaced hundreds of micrometres apart (valleys), is an effective alternative to conventional treatments. MRT's advantage is that normal tissues can be spared from harm whilst maintaining tumour control.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!