The N-acetylmuramoyl-L-alanine amidase encoded by the Bacillus subtilis 168 prophage SP beta.

Microbiology (Reading)

Institut de génétique et de biologie microbiennes, Rue César-Roux 19, CH-1005 Lausanne, Switzerland.

Published: April 1998

Heat shock of Bacillus subtilis CU1147, a strain lysogenic for SP beta c2, a prophage with a thermosensitive repressor, results in phage induction and subsequent cell lysis. Cloning in Escherichia coli and sequencing of a DNA fragment of prophage SP beta led to the identification of blyA, the gene encoding a 367 amino acid polypeptide with a molecular mass of 39.6 kDa. Purified BlyA obtained from the E. coli clone exhibited an N-acetylmuramoyl-L-alanine amidase activity. Insertional mutagenesis confirmed that the latter enzyme was associated with SP beta-phage-mediated cell lysis. Analysis of the neighbouring sequence suggested that the two ORFs immediately downstream of blyA and belonging to the same operon encode polypeptides which may be involved in the release of the endolysin. The presence on the chromosomes of B. subtilis or related Bacillus spp. of other, similar genes, and their possible relationship, is discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1099/00221287-144-4-885DOI Listing

Publication Analysis

Top Keywords

n-acetylmuramoyl-l-alanine amidase
8
bacillus subtilis
8
prophage beta
8
cell lysis
8
amidase encoded
4
encoded bacillus
4
subtilis 168
4
168 prophage
4
beta heat
4
heat shock
4

Similar Publications

Pneumococcal carriage in a large Sicilian sample population: impact on the current epidemiological scenario and implications for future vaccination strategies.

Front Cell Infect Microbiol

December 2024

Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties "P. Giaccone", University of Palermo, Palermo, Italy.

Introduction: is a prevalent and virulent global pathogen, with colonization being considered a precondition for pneumococcal disease. Understanding colonization is critical for gaining insights into transmission dynamics and developing effective interventions. This study aimed to determine the prevalence of nasopharyngeal colonization and serotype distribution in the Sicilian population.

View Article and Find Full Text PDF

Transcriptional Analysis and Identification of a Peptidoglycan Hydrolase (PGH) and a Ribosomal Protein with Antimicrobial Activity Produced by .

Int J Mol Sci

November 2024

Departamento de Biotecnología, Universidad Autónoma Metropolitana Unidad Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, Mexico City 09340, Mexico.

The growing challenge of antibiotic resistance has intensified the search for new antimicrobial agents. Promising alternatives include peptidoglycan hydrolases (PGHs) and certain ribosomal proteins, both of which exhibit antimicrobial activity. This study focuses on a strain, isolated from fermented meat, capable of inhibiting pathogens such as , , , , and .

View Article and Find Full Text PDF

Phage-derived peptidoglycan hydrolases (i.e. lysins) are considered promising alternatives to conventional antibiotics due to their direct peptidoglycan degradation activity and low risk of resistance development.

View Article and Find Full Text PDF

causes whooping cough in humans that spreads directly from individual to individual mainly by aerosolized respiratory droplets. Nowadays, it gained the attention of scientific community because it has already been reemerged as one of the major public health threats despite widespread vaccination efforts. Moreover, the growing antibiotic resistance has made it difficult to combat this pathogen with currently available antibiotics.

View Article and Find Full Text PDF

Orchestrated action of peptidoglycan (PG) synthetases and hydrolases is vital for bacterial growth and viability. Although the function of several PG synthetases and hydrolases is well understood, the function, regulation, and mechanism of action of PG hydrolases characterised as lysostaphin-like endopeptidases have remained elusive. Many of these M23 family members can hydrolyse glycyl-glycine peptide bonds and show lytic activity against whose PG contains a pentaglycine bridge, but their exact substrate specificity and hydrolysed bonds are still vaguely determined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!