Inhibition of salivary amylase by black and green teas and their effects on the intraoral hydrolysis of starch.

Caries Res

Nutrition Section, and Center for Research on the Oral and Biological Effects of Foods, Forsyth Dental Center, Boston, Mass 02115, USA.

Published: June 1998

Tea decoctions prepared from a number of black and green teas inhibited amylase in human saliva. Black teas gave higher levels of inhibition than green teas, and removal of tea tannins with gelatin led to the loss of inhibitory activity from all decoctions. Streptococcal amylase was similarly inhibited by tea decoctions. Fluoride was without effect on amylase. Since salivary amylase hydrolyzes food starch to low molecular weight fermentable carbohydrates, experiments were carried out to determine whether tea decoctions would interfere with the release of maltose in food particles that became entrapped on the dentition. Subjects consumed salted crackers and rinsed subsequently for 30 s with black or green tea decoctions, or water. Maltose release was reduced by up to about 70% after rinsing with the teas. Black tea decoction was significantly more effective than green tea, in agreement with the in vitro data. The observations supported the hypothesis that tea consumption can be effective in reducing the cariogenic potential of starch-containing foods such as crackers and cakes. Tea may reduce the tendency for these foods to serve as slow-release sources of fermentable carbohydrate.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000016458DOI Listing

Publication Analysis

Top Keywords

tea decoctions
16
black green
12
green teas
12
tea
9
salivary amylase
8
green tea
8
amylase
5
black
5
green
5
teas
5

Similar Publications

Ethnopharmacological Relevance: Anxiety and depression are leading causes of disability worldwide, often exacerbated by chronic stress. Schinus terebinthifolia Raddi. has been used in traditional medicine for several purposes.

View Article and Find Full Text PDF

Chrysanthemi Flos has been consumed as floral tea for centuries, but the effects of stir-frying on its chemical profile, sensory characteristics, and bioactivity remain unclear. This study used untargeted metabolomics, sensory assessment (E-eye, E-nose, E-tongue), and antioxidant activity evaluation to investigate compositional changes and their effects. In the metabolomics analysis, a total of 101 non-volatile and 306 volatile differential metabolites were identified.

View Article and Find Full Text PDF

The Bioprotective Effects of Marigold Tea Polyphenols on Obesity and Oxidative Stress Biomarkers in High-Fat-Sugar Diet-Fed Rats.

Cardiovasc Ther

January 2025

Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool L3 3AF, UK.

The research is aimed at exploring the potential of marigold petal tea (MPT), rich in polyphenol contents, against oxidative stress and obesity in a rat model following a high-fat-sugar diet (HFSD). The MPT was prepared through the customary method of decoction and was subjected to analysis for its polyphenol composition using reversed-phase high-performance liquid chromatography (RP-HPLC). Two specific doses of MPT, namely, 250 and 500 mg/kg body weight (BW), were chosen for the study-referred to as MPT-250 and MPT-500, respectively.

View Article and Find Full Text PDF

Metabolomics Characterization of Chemical Composition and Bioactivity of Highland Barley Monascus Tea Decoction Before and After Simulated Digestion In Vitro.

Foods

December 2024

Key Laboratory of Agricultural Product Processing on Qinghai-Tibetan Plateau, College of Agricultural and Forestry Sciences, Qinghai University, Xining 810000, China.

A broadly targeted metabolomics approach based on UPLC-MS/MS was employed to investigate the changes in chemical composition and in vitro activity of highland barley Monascus tea decoction before and after simulated digestion. The characteristic metabolites of the tea decoction before and after in vitro-simulated digestion were identified, and the in vitro antioxidant and enzyme inhibitory activities of the tea decoction were further analyzed. The study detected 1431 metabolites, including amino acids and their derivatives, alkaloids, organic acids, nucleotides and their derivatives, lipids, terpenoids, and phenolic acids.

View Article and Find Full Text PDF

Phenolic compounds, antioxidant and antileishmanial activities of kombucha as affected by fermentation time.

Heliyon

November 2024

Antimicrobial and Biocontrol Agents Unit, Laboratory for Phytobiochemistry and Medicinal Plants Studies, Department of Biochemistry, Faculty of Science University of Yaounde I, P. O Box 812, Yaounde, Cameroon.

Objective: Study the impact of fermentation time on the phytochemical properties, antioxidant and antileishmanial activities.

Materials And Methods: The preparation of Kombucha tea by fermentation was performed under aseptic conditions and symbiotic culture of bacteria and yeast (SCOBY) layer was maintained in culture for continuous growth in a water-sugar (4 L-500 g) mixture for 7, 14, 21, 28 and 35 days. The process of preparation was performed using a decoction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!