The relationship among gender, lipopolysaccharide (LPS), and liver disease is complex. Accordingly, the effect of estrogen on activation of Kupffer cells by endotoxin was studied. All rats given estrogen intraperitoneally 24 h before an injection of a sublethal dose of LPS (5 mg/kg) died within 24 h, whereas none of the control rats died. Mortality was prevented totally by pretreatment with gadolinium chloride, a Kupffer cell toxicant. Peak serum tumor necrosis factor-alpha (TNF-alpha) values as well as TNF-alpha mRNA in the liver after LPS were twice as high in the estrogen-treated group as in the untreated controls. Plasma nitrite levels and inducible nitric oxide synthase in the liver were also elevated significantly in estrogen-treated rats 6 h after LPS. Furthermore, Kupffer cells isolated from estrogen-treated rats produced about twice as much TNF-alpha and nitrite as controls did in response to LPS. In addition, Kupffer cells from estrogen-treated rats required 15-fold lower amounts of LPS to increase intracellular Ca2+ than controls did, and Kupffer cells from estrogen-treated animals expressed more CD14, the receptor for LPS/LPS binding protein, than controls. Moreover, estrogen treatment increased LPS binding protein mRNA dramatically in liver in 6-24 h. It is concluded that estrogen treatment in vivo sensitizes Kupffer cells to LPS, leading to increased toxic mediator production by the liver.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpgi.1998.274.4.G669 | DOI Listing |
J Clin Exp Hepatol
December 2024
BRIC-Translational Health Science and Technology Institute, Faridabad, Haryana, India.
Background/aim: Non-alcoholic fatty liver disease (NAFLD) is a global health concern with limited treatment options. The paucity of predictive models in preclinical settings seems to be one of the limitations of identifying effective medicines. We therefore aimed to develop an model that can display the key hallmarks of NAFLD, such as steatosis, inflammation, and fibrosis.
View Article and Find Full Text PDFeGastroenterology
November 2024
School of Biological Sciences, Queen's University Belfast, Belfast, UK.
Metabolic dysfunction-associated steatotic liver disease (MASLD), previously referred to as non-alcoholic fatty liver disease, encompasses a broad range of hepatic metabolic disorders primarily characterised by the disruption of hepatic lipid metabolism, hepatic lipid accumulation and steatosis. Severe cases of MASLD might progress to metabolic dysfunction-associated steatohepatitis, characterised by hepatic inflammation, hepatocyte ballooning degeneration, activation of hepatic stellate cells (HSCs) and fibrogenesis. It may further progress to hepatocellular carcinoma.
View Article and Find Full Text PDFImmunity
January 2025
Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Faculty of Science, Ghent University, Ghent, Belgium. Electronic address:
Our understanding of the functional heterogeneity of resident versus recruited macrophages in the diseased liver is limited. A population of recruited lipid-associated macrophages (LAMs) has been reported to populate the diseased liver alongside resident Kupffer cells (KCs). However, the precise roles of these distinct macrophage subsets remain elusive.
View Article and Find Full Text PDFBiomolecules
December 2024
Department of Immunology and Microbiology, National Defense Medical College, Saitama 359-8513, Japan.
The liver is an indispensable metabolic organ, responsible for accumulating and transporting various nutritional compounds in hepatocytes. However, the transport of these materials from the liver is an energetically intensive task because they contain a considerable number of hydrophobic components, including free cholesterol, and require specialized transfer proteins to shuttle these substances through an aqueous phase. Liver X receptors (LXRs) induce the expression of cholesterol transporters in macrophages to transport free cholesterol derived from apoptotic cells into extracellular space via high-density lipoproteins.
View Article and Find Full Text PDFAntiviral Res
January 2025
Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Guangdong Provincial Key Laboratory for Prevention and Control of Major Liver Diseases, Guangdong Provincial Clinical Research Center for Viral Hepatitis, Guangdong Institute of Hepatology, Guangdong Provincial Research Center for Liver Fibrosis Engineering and Technology, Guangzhou, China. Electronic address:
Background & Aims: Chronic hepatitis B (CHB) arises from a persistent hepatitis B virus (HBV) infection, complicating efforts for a functional cure. Kupffer cells (KCs), liver-resident macrophages, are pivotal in mediating immune tolerance to HBV. Although CD163 marks M2-polarized KCs, its precise role in HBV infection remains unclear and warrants further investigation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!